DOI QR코드

DOI QR Code

포름산 혼합 나노섬유 성장 구리마이크로입자를 이용한 구리 소결 페이스트 합성

Synthesis of Cu Sintering Paste Using Growth of Nanofiber on Cu Microparticles Mixed with Formic Acid

  • 전영운 (금오공과대학교 화학공학과) ;
  • 장지웅 (금오공과대학교 화학공학과)
  • Young Un Jeon (Department of Chemical Engineering, Kumoh National Institute of Technology) ;
  • Ji Woong Chang (Department of Chemical Engineering, Kumoh National Institute of Technology)
  • 투고 : 2024.02.16
  • 심사 : 2024.02.23
  • 발행 : 2024.04.10

초록

구리 마이크로입자의 표면을 나노섬유형태의 포름산구리로 합성하고 포름산과 혼합하여 구리판을 접합할 수 있는 소결 페이스트를 합성하였다. 평균 10 ㎛의 구리 마이크로입자는 400 ℃ 이상에서 표면이 산화구리 나노섬유로 합성되고 포름산과 혼합하여 표면이 포름산화된 구리 마이크로입자가 합성된다. 포름산구리는 구리 벌크입자나 나노입자의 녹는점에 비해 낮은 온도인 210 ℃에서 구리로 분해되어 저온 소결로 구리판의 접합이 가능하다. 표면을 나노섬유 형태로 제어하여 표면적을 높여 포름산구리로의 반응속도, 응집에 필요한 접촉면적, 포름산구리의 분해속도 등이 증가하여 짧은 시간에 소결할 수 있도록 하였다.

A sintering paste for bonding copper plates was synthesized using Cu formate nanofibers on Cu microparticles, mixed with formic acid. Copper oxide nanofibers of 10 ㎛ grown at 400 ℃ on Cu microparticles on the surface were transformed into copper formate nanofibers through the mixing of formic acid. Compared to Cu bulk particles or nanoparticles, Cu formate on Cu microparticles decomposed into metallic Cu at a lower temperature of 210 ℃, facilitating the sintering of copper paste. The growth of nanofiber on Cu microparticles allowed for an increase in the reaction rate of formation to copper formate, aggregating surface area, and decomposition rate of copper formate, resulting in fast sintering.

키워드

과제정보

이 연구는 금오공과대학교 학술연구비로 지원되었음(2021)

참고문헌

  1. D. Tomotoshi and H. Kawasaki, Surface and interface designs in copper-based conductive inks for printed/flexible electronics, Nanomaterials, 10, 1689 (2020).
  2. D. F. Fernandes, C. Majidi, and M. Tavakoli, Digitally printed stretchable electronics: A review, J. Mater. Chem. C, 7, 14035-14068 (2019).
  3. S. Huang, Y. Liu, Y. Zhao, Z. Ren, and C. F. Guo, Flexible electronics: Stretchable electrodes and their future, Adv. Funct. Mater., 29, 1805924 (2019).
  4. N. Matsuhisa, X. Chen, Z. Bao, and T. Someya, Materials and structural designs of stretchable conductors, Chem. Soc. Rev., 48, 2946-2966 (2019).
  5. Y. Huang, X. Fan, S.-C. Chen, and N. Zhao, Emerging technologies of flexible pressure sensors: Materials, modeling, devices, and manufacturing, Adv. Funct. Mater., 29, 1808509 (2019).
  6. S. Khan, S. Ali, and A. Bermak, Recent developments in printing flexible and wearable sensing electronics for healthcare applications, Sensors, 19, 1230 (2019).
  7. Y. Yu, H. Y. Y. Nyein, W. Gao, and A. Javey, Flexible electrochemical bioelectronics: The rise of in situ bioanalysis, Adv. Mater., 32, 902083 (2020).
  8. Y. Ma, Y, Zhang, S. Cai, Z. Han, X. Liu, F. Wang, Y. Cao, Z. Wang, H. Li, Y. Chen, and X. Feng, Flexible hybrid electronics for digital healthcare, Adv. Mater., 32, 1902062 (2020).
  9. Y. Z, Zhang, Y. Wang, T. Cheng, L. Q. Yao, X. Li, W. Y. Lai, and W. Huang, Printed supercapacitors: Materials, printing and applications, Chem. Soc. Rev., 48, 3229-3264 (2019).
  10. H. Li and J. Liang, Recent development of printed micro-supercapacitors: Printable materials, printing technologies, and perspectives, Adv. Mater., 32, 1805864 (2020).
  11. S. Naghdi, K. Y. Rhee, D. Hui, and S. J. Park, A review of conductive metal nanomaterials as conductive, transparent, and flexible coatings, thin films, and conductive fillers: Different deposition methods and applications, Coatings, 8, 278 (2018).
  12. L. Nayak, S. Mohanty, S. K. Nayak, and A. Ramadoss, A review on inkjet printing of nanoparticle inks for flexible electronics, J. Mater. Chem. C, 7, 8771-8795 (2019).
  13. M. Hu, J. Sun, and J. Yang, Copper inks for printed electronics, Nanoscale, 14, 16003 (2022).
  14. Q. Huang and Y. Zhu, Printing conductive nanomaterials for flexible and stretchable electronics: A review of materials, processes, and applications, Adv. Mater. Technol., 4, 1800546 (2019).
  15. R. Khazaka, L. Mendizabal, and D. Henry, Review on joint shear strength of nano-silver paste and its long-term high temperature reliability, Electro. Mater., 43, 2459-2466 (2014).
  16. S. Lee, S. Han, Y. Kim, and K. Jang, Copper sintering pastes with various polar solvents and acidic activators, ACS Omega, 8, 39135-39142 (2023).
  17. S. Bhuvaneshwari and N. Gopalakrishnan, Hydrothermally synthesized Copper Oxide (CuO) superstructures for ammonia sensing, J. Colloid Interface Sci., 480, 76-84 (2016).
  18. B. J. Hansen, H. Chan, J. Lu, G. Lu, and J. Chen, Short-circuit diffusion growth of long bi-crystal CuO nanowires, Chem. Phys. Lett., 504, 41-45 (2011).
  19. M. Chen, Y. Yue, and Y. Ju, Growth of metal and metal oxide nanowires driven by the stress-induced migration, J. Appl. Phys., 111, 104305 (2012).
  20. L. Yuan, Y. Wang, R. Mema, and G. Zhou, Driving force and growth mechanism for spontaneous oxide nanowire formation during the thermal oxidation of metals, Acta Mater., 59, 2491-2500 (2011).
  21. Y. Li, T. Qi, M. Chen, and X. Fei, Mixed ink of copper nanoparticles and copper formate complex with low sintering temperatures, J. Mater. Sci.: Mater. Electron., 27, 11432-11438 (2016).
  22. W. Marchal, A. Longo, V. Briois, K. Van Hecke, K. Elen, M. K. Van Bael, and A. Hardy, Understanding the importance of Cu(I) intermediates in self-reducing molecular inks for flexible electronics, Inorg. Chem., 57, 15205-15215 (2018).
  23. L. F. de Diego, F. Garcia-Labiano, J. Adanez, P. Gayan, A. Abad, B. M. Corbella, and J. Maria Palacios, Development of Cu-based oxygen carriers for chemical-looping combustion, Fuel, 83, 1749-175 (2004).