DOI QR코드

DOI QR Code

P-i-n 페로브스카이트 태양전지 응용을 위한 2PACz을 이용한 NiO의 개질

Modification of NiO Using 2PACz for P-i-n Perovskite Solar Cells

  • 이선민 (군산대학교 화학공학과) ;
  • 김석순 (군산대학교 화학공학과)
  • Seon-Min Lee (Department of Chemical Engineering, Kunsan National University) ;
  • Seok-Soon Kim (Department of Chemical Engineering, Kunsan National University)
  • 투고 : 2024.02.01
  • 심사 : 2024.03.01
  • 발행 : 2024.04.10

초록

NiO와 페로브스카이트 사이의 전하 이동과 계면특성을 개선하기 위해, 솔-젤로 제조된 NiO를 [2-(9H-carbazol-9-yl)ethyl] phosphonic acid (2PACz)으로 개질한다. 2PACz의 인산기(head group)는 NiO 표면의 수산화기(-OH)와 응축 반응을 통해 결합되며, 더 깊은 가전자대가 형성되면서 페로브스카이트 층의 가전자대와 에너지밴드가 더 잘 일치하게 되어 생성된 전하의 재결합이 억제되고 에너지 손실이 감소하게 된다. 더불어, 페로브스카이트의 표면 및 페로브스카이트/정공 전달층 계면에 핀홀이 없는 고질의 페로브스카이트 필름이 형성된다. 결과적으로, 13.69%의 효율을 나타내는 NiO 기반 소자와 비교했을 때, 최적의 2PACz으로 개질된 NiO 기반 소자는 17.08%의 높은 효율을 보여주며, 공기 조건에서 더 뛰어난 안정성을 보여준다.

To improve charge transfer and surface contact between NiO and perovskite, sol-gel derived NiO is modified with [2-(9H-car-bazol-9-yl)ethyl] phosphonic acid (2PACz) in p-i-n structured perovskite solar cells (PeSCs). The phosphonic acid head group in the 2PACz can bind to the hydroxyl groups on the surface of NiO by a condensation reaction, which results in a better-matched energy level with the valence band of perovskite layers, reducing nonradiative recombination and energy loss. Furthermore, the formation of pin-hole free perovskite films is observed in the 2PACz modified NiO system. Consequently, the combination of sol-gel processed NiO with optimal 2PACz exhibits a higher efficiency of 17.08% and superior stability under ambient air conditions without any encapsulation, compared to a bare NiO based device showing 13.69%.

키워드

과제정보

본 연구는 과학기술정보통신부(MSIT)와 교육부의 재원으로 한국연구재단(NRF)의 지원을 받아 수행된 중견연구지원사업(NRF-2021R1A2C1010194) 및 지자체-대학 협력기반 지역혁신 사업(2023RIS-008)의 결과입니다.

참고문헌

  1. M. K. Assadi, S. Bakhoda, R. Saidur, and H. Hanaei, Recent progress in perovskite solar cells, Renew. Sustain. Energy Rev., 81, 2812-2822 (2018). 
  2. D. P. Mcmeekin, G. Sadoughi, W. Rehman, G. E., Eperon, M. Saliba, M. T. Horantner, A. Haghighirad, N. Sakai, L. Korte, B. Rech, M. B. Johnston, L. M. Herz, and H. J. Snaith, A mixed-cation lead mixed-halide per-ovskite absorber for tandem solar cells, Science, 351, 151-155 (2016). 
  3. X. Lian, J. Chen, S. Shan, G. Wu, and H. Chen, Polymer modification on the NiOx hole transport layer boosts open-circuit voltage to 1.19 V for perovskite solar cells, ACS Appl. Mater. Interfaces, 12, 46340-46347 (2020). 
  4. A. B. Djurisic, F. Z. Liu, H. W. Tam, M. Wong, A. Ng, C. Surya, W. Chen, and Z. B. He, Perovskite solar cells-An overview of critical issues, Prog. Quantum Electron., 53, 1-37 (2017). 
  5. J. H. Heo, H. J. Han, D. Kim, T. K. Ahn, and S. H. Im, Hysteresis-less inverted CH3NH3PbI3 planar perovskite hybrid solar cells with 18.1% power conversion efficiency, Energy Environ. Sci., 8, 1602-1608 (2015). 
  6. M. Saliba, M. Stolterfoht, C. M. Wolff, D. Neher, and A. Abate, Measuring aging stability of perovskite solar cells, Joule, 2, 1019-1024 (2018). 
  7. K. Jager, L. Korte, B. Rech, and S. Albrecht, Numerical optical optimization of monolithic planar perovskite-silicon tandem solar cells with regular and inverted device architectures, Opt. Express, 25, A473-A482 (2017). 
  8. E. Kohnen, M. Jost, A. B. Morales-Vilches, P. Tockhorn, A. Al-Ashouri, B. Macco, L. Kegelmann, L. Korte, B. Rech, R. Schlatmann, B. Stannowski, and S. Albrecht, Highly efficient monolithic perovskite silicon tandem solar cells: Analyzing the influence of current mismatch on device performance, Sustain. Energy Fuels, 3, 1995-2005 (2019). 
  9. A. Rajagopal, K. Yao, and A. K.-Y. Jen, Toward perovskite solar cell commercialization: A perspective and research roadmap based on interfacial engineering, Adv. Mater., 30, 1800455 (2018). 
  10. S. Zheng, G. Wang, T. Liu, L. Lou, S. Xiao, and S. Yang, Materials and structures for the electron transport layer of efficient and stable perovskite solar cells, Sci. China Chem., 62, 800-809 (2019). 
  11. J. Chen, X. Lian, Y. Zhang, W. Yang, J. Li, M. Qin, X. Lu, G. Wu, and H. Chen, Interfacial engineering enables high efficiency with a high open-circuit voltage above 1.23 V in 2D perovskite solar cells, J. Mater. Chem. A, 6, 18010-18017 (2018). 
  12. X. Lian, J. Chen, Y. Zhang, G. Wu, and H. Chen, Inverted perovskite solar cells based on small molecular hole transport material C8-dioctylbenzothienobenzothiophene, Chin. J. Chem., 37, 1239-1244 (2019). 
  13. X. Lian, J. Chen, Y. Zhang, S. Tian, M. Qin, J. Li, T. R. Andersen, G. Wu, X. Lu, and H. Chen, Two-dimensional inverted planar perovskite solar cells with efficiency over 15% via solvent and interface engineering, J. Mater. Chem. A, 7, 18980-18986 (2019). 
  14. C. Bi, Q. Wang, Y. Shao, Y. Yuan, Z. Xiao, and J. Huang, Non-wetting surface-driven high-aspect-ratio crystalline grain growth for efficient hybrid perovskite solar cells, Nat. Commun., 6, 7747 (2015). 
  15. D.-Y. Lee, S.-I. Na, and S.-S. Kim, Graphene oxide/PEDOT: PSS composite hole transport layer for efficient and stable planar heterojunction perovskite solar cells, Nanoscale, 8, 1513-1522 (2016). 
  16. Y. Yao, C. Cheng, C. Zhang, H. Hu, K. Wang, and S. De Wolf, Organic hole-transport layers for efficient, stable, and scalable inverted perovskite solar cells, Adv. Mater., 34, 2203794 (2022). 
  17. Y. Cheng, H. W. Li, J. Zhang, Q. D. Yang, T. Liu, Z. Guan, J. Qing, C.-S. Lee, and S. W. Tsang, Spectroscopic study on the impact of methyl- ammonium iodide loading time on the electronic properties in per- ovskite thin films, J. Mater. Chem. A, 4, 561-567 (2016). 
  18. Y. Cheng, X. Xu, Y. Xie, H. W. Li, J. Qing, C. Ma, C.-S. Lee, F. So, and, S. W. Tsang, 18% high-efficiency air-processed perovskite solar cells made in a humid atmosphere of 70% RH, Sol. RRL, 1, 1700097 (2017). 
  19. X. Xu, C. Ma, Y. Cheng, Y.-M. Xie, X. Yi, B. Gautam, S. Chen, H.-W. Li, C.-S. Lee, F. So, and S.-W. Tsang, Ultraviolet-ozone surface modification for non-wetting hole transport materials based inverted planar perovskite solar cells with efficiency exceeding 18%, J. Power Sources, 360, 157-165 (2017). 
  20. Y. Bai, Q. Dong, Y. Shao, Y. Deng, Q. Wang, L. Shen, D. Wang, W. Wei, and J. Huang, Enhancing stability and efficiency of perovskite solar cells with crosslinkable silane-functionalized and doped fullerene, Nat. Commun., 7, 12806 (2016). 
  21. A. Al-Ashouri, A. Magomedov, M. Ross, M. Jost, M. Talaikis, G. Chistiakova, T. Bertram, J. A. Marquez, E. Kohnen, E. Kasparavicius, S. Levcenco, L. G.-E. S. J. Hages, R. Schlatmann, B. Rech, T. Malinauskas, T. Unold, C. A. Kaufmann, L. Korte, G. Niaura, V. Getautis, and S. Albrecht, Conformal monolayer contacts with lossless interfaces for perovskite single junction and monolithic tandem solar cells, Energy Environ. Sci., 12, 3356-3369 (2019). 
  22. E. Aktas, N. Phung, H. Kobler, D. A. Gonzalez, M. Mendez, I. Kafedjiska, S.-H. Turren-Cruz, R. Wenisch, I. Lauermann, A. Abate, and E. Palomares, Understanding the perovskite/self-assembled selective contact interface for ultra-stable and highly efficient p-i-n perovskite solar cells, Energy Environ. Sci., 14, 3976-3985 (2021). 
  23. X. Yin, Y. Guo, H. Xie, W. Que, and L. B. Kong, Nickel oxide as efficient hole transport materials for perovskite solar cells, Sol. RRL, 3, 1900001 (2019). 
  24. J. You, L. Meng, T. B. Song, T. F. Guo, Y. Yang, W. H. Chang, Z. Hong, H. Chen, H. Zhou, Q. Chen, Y. Liu, N. D. Marco, and Y. Yang, Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers, Nat. Nanotechnol., 11, 75-81 (2016). 
  25. Lian, X., Chen, J., Shan, S., Wu, G., and Chen, H., Polymer modification on the NiOx hole transport layer boosts open-circuit voltage to 1.19 V for perovskite solar cells, ACS Appl. Mater. Interfaces, 12, 46340-46347 (2020). 
  26. N. Phung, M. Verheijen, A. Todinova, K. Datta, M. Verhage, A. Al-Ashouri, H. Kobler, X. Li, A. Abate, S. Albrecht, M. Creatore, Enhanced self-assembled monolayer surface coverage by ALD NiO in p-i-n perovskite solar cells, ACS Appl. Mater. Interfaces, 14, 2166-2176 (2021). 
  27. I. Kafedjiska, I. Levine, A. Musiienko, N. Maticiuc, T. Bertram, A. Al-Ashouri, C. A. Kaufmann, S. Albrecht, R. Schlatmann, and I. Lauermann, Advanced characterization and optimization of NiOx: Cu-SAM hole-transporting Bi-layer for 23.4% efficient monolithic Cu(In,Ga)Se2-perovskite tandem solar cells, Adv. Funct. Mater., 33, 2302924 (2023). 
  28. C.-H. M. Chuang, P. R. Brown, V. Bulovic, and M. G. Bawendi, Improved performance and stability in quantum dot solar cells through band alignment engineering, Nat. Mater., 13, 796-801 (2014). 
  29. D. S. Mann, P. Patil, D.-H. Kim, S.-N. Kwon, and, S. I. Na, Boron nitride-incorporated NiOx as a hole transport material for high-performance p-i-n planar perovskite solar cells, J. Power Sources, 477, 228738 (2020).