DOI QR코드

DOI QR Code

Estimating the Relative Contribution of Organic Phosphorus to Organic Matters with Various Sources Flowing into a Reservoir Via Fluorescence Spectroscopy

형광스펙트럼을 이용한 유역 하류 저수지의 유입 유기물 내 유기인 기여도 평가

  • Received : 2023.10.27
  • Accepted : 2024.02.27
  • Published : 2024.03.30

Abstract

The introduction of a significant amount of phosphorous into aquatic environments can lead to eutrophication, which can in turn result in algal blooms. For the effective management of watersheds and the prevention of water quality problems related to nonpoint organic matter (OM) sources, it is essential to pinpoint the predominant OM sources. Several potential OM sources were sampled from upper agricultural watersheds, such as fallen leaves, riparian reeds, riparian plants, paddy soil, field soil, riparian soil, cow manure, and swine manure. Stream samples were collected during two storm events, and the concentrations of dissolved organic carbon (DOC) and phosphorous (DOP) from these OM sources and stream samples were assessed. DOM indicators using fluorescence spectroscopy, including HIX, FI, BIX, and EEM-PARAFAC, were evaluated in terms of their relevance in discerning DOM sources during storm events. Representative DOM descriptors were chosen based on specific criteria, such as value ranges and pronounced differences between low and high-flow periods. Consequently, the spectral slope ratio (SR) paired with fluorescence index (FI) using end-member mixing analysis (EMMA) proved to be suitable for estimating the contribution of organic carbon (OC). The contribution of each organic phosphorous (OP) in stream samples was determined using the phosphorous-to-carbon (P/C) ratio in conjunction with the OC contribution. Notably, OP derived from swine manure in stream samples was found to make the most dominant contribution, ranging from 61.3% to 94.2% (average 78.1% ± 12.7%). The results of this research offer valuable insights into the selection of suitable indicators to recognize various OM sources and highlight the main sources of OP in forested-agricultural watersheds.

Keywords

Acknowledgement

본 연구는 2019년 K-water 연구원 위탁연구사업(과제명:댐 저수지 유기물 증가 원인 분석을 위한 오염원 기원 추적)과 2022년 해양수산부 해양수산과학기술진흥원 - 해양 유해물질 오염원 추적 기법 개발 사업(KIMST-20220534)의 지원을 받아 수행되었습니다.

References

  1. Bauer, J. E. and Bianchi, T. S. (2011). Dissolved organic carbon cycling and transformation, Treatise on Estuarine and Coastal Science, Elsevier, 7-67. 
  2. Blake, R. E., O'Neil, J. R., and Surkov, A. V. (2005). Biogeochemical cycling of phosphorus: Insights from oxygen isotope effects of phosphoenzymes, American Journal of Science, 305, 596-620. 
  3. Bolan, N. S., Adriano, D. C., and De-la-Luz, M. (2004). Dynamics and environmental significance of dissolved organic matter in soil, 3rd Australian New Zealand Soils Conference, 1-8. 
  4. Chen, M. and Jaffe, R. (2014). Photo-and bio-reactivity patterns of dissolved organic matter from biomass and soil leachates and surface waters in a subtropical wetland, Water Research, 61, 181-190. 
  5. Cory, R. M., Miller, M. P., McKnight, D. M., Guerard, J. J., and Miller, P. L. (2010). Effect of instrument-specific response on the analysis of fulvic acid fluorescence spectra, Limnology and Oceanography: Methods, 8, 67-78. 
  6. Derrien, M., Lee, M. H., Choi, K., Lee, K. S., and Hur, J. (2020). Tracking the evolution of particulate organic matter sources during summer storm events via end-member mixing analysis based on spectroscopic proxies, Chemosphere, 252, 126445. 
  7. Findlay, S. E. and Sinsabaugh, R. L. (2003). Aquatic ecosystems: Interactivity of dissolved organic matter, Elsevier. 
  8. Helms, J. R., Stubbins, A., Ritchie, J. D., Minor, E. C., Kieber, D. J., and Mopper, K. (2008). Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter, Limnology and Oceanography, 53, 955-969. 
  9. Huguet, A., Vacher, L., Relexans, S., Saubusse, S., Froidefond, J. M., and Parlanti, E. (2009). Properties of fluorescent dissolved organic matter in the Gironde Estuary, Organic Geochemistry, 40, 706-719. 
  10. Inamdar, S., Finger, N., Singh, S., Mitchell, M., Levia, D., Bais, H., Scott, D., and McHale, P. (2012). Dissolved organic matter (DOM) concentration and quality in a forested mid-Atlantic watershed, USA, Biogeochemistry, 108, 55-76. 
  11. Korea Meteorological Administration (KMA). (2024). Meteorological data opening portal, https://data.kma.go.kr (accessed March 2024). 
  12. Lawaetz, A. J. and Stedmon, C. A. (2009). Fluorescence intensity calibration using the Raman scatter peak of water, Applied Spectroscopy, 63, 936-940. 
  13. Lee, M. H., Lee, S. Y., Yoo, H. Y., Shin, K. H., and Hur, J. (2020). Comparing optical versus chromatographic descriptors of dissolved organic matter (DOM) for tracking the non-point sources in rural watersheds, Ecological Indicators, 117, 106682. 
  14. Lee, M. H., Lee, Y. K., Derrien, M., Choi, K., Shin, K. H., Jang, K. S., and Hur, J. (2019). Evaluating the contributions of different organic matter sources to urban river water during a storm event via optical indices and molecular composition, Water Research, 165, 115006. 
  15. Lee, M. H., Payeur-Poirier, J. L., Park, J. H., and Matzner, E. (2016). Variability in runoff fluxes of dissolved and particulate carbon and nitrogen from two watersheds of different tree species during intense storm events, Biogeosciences, 13, 5421-5432. 
  16. McGuirk Flynn, A. (2008). Organic matter and nutrient cycling in a coastal plain estuary: Carbon, nitrogen, and phosphorus distributions, budgets, and fluxes, Journal of Coastal Research, 10055, 76-94. 
  17. McKnight, D. M., Boyer, E. W., Westerhoff, P. K., Doran, P. T., Kulbe, T., and Andersen, D. (2001). Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity, Limnology and Oceanography, 46, 38-48. 
  18. Ohno, T. (2002). Fluorescence inner-filtering correction for determining the humification index of dissolved organic matter, Environmental Science and Technology, 36, 742-746. 
  19. Osburn, C. L., Wigdahl, C. R., Fritz, S. C., and Saros, J. E. (2011). Dissolved organic matter composition and photoreactivity in prairie lakes of the U. S. Great Plains, Limnology and Oceanography, 56, 2371-2390. 
  20. Park, S. C., Oh, C. Y., Kim, J. O., Lee, U., and Gwak, P. J. (2017). Characteristics of the eutrophication of Yeongsan River by using the Korea Trophic State Index (TSI KO), Proceedings of the Korea Water Resources Association Conference, Korea Water Resources Association, 533-537. 
  21. Phillips, D. L. and Gregg, J. W. (2003). Source partitioning using stable isotopes: Coping with too many sources, Oecologia, 136, 261-269. 
  22. Phillips, D. L., Newsome, S. D., and Gregg, J. W. (2005). Combining sources in stable isotope mixing models: Alternative methods, Oecologia, 144, 520-527. 
  23. Singh, S., Inamdar, S., and Mitchell, M. (2015). Changes in dissolved organic matter (DOM) amount and composition along nested headwater stream locations during baseflow and stormflow, Hydrological Processe, 29, 1505-1520. 
  24. Stedmon, C. A. and Bro, R. (2008). Characterizing dissolved organic matter fluorescence with parallel factor analysis: A tutorial, Limnology and Oceanography: Methods, 6, 572-579. 
  25. Stedmon, C. A., Markager, S., and Bro, R. (2003). Tracing dissolved organic matter in aquatic environments using a new approach to fluorescence spectroscopy, Marine Chemistry, 82, 239-254. 
  26. Tank, J. L., Rosi-Marshall, E. J., Griffiths, N. A., Entrekin, S. A., and Stephen, M. L. (2010). A review of allochthonous organic matter dynamics and metabolism in streams, Journal of the North American Benthological Society, 29, 118-146. 
  27. Udikovic-Kolic, N., Wichmann, F., Broderick, N. A., and Handelsman, J. (2014). Bloom of resident antibiotic-resistant bacteria in soil following manure fertilization, Proceedings of the National Academy of Sciences (PNAS), U. S. A. 111, 15202-15207. 
  28. von Schiller, D., Graeber, D., Ribot, M., Timoner, X., Acuna, V., Marti, E., Sabater, S., and Tockner, K. (2015). Hydrological transitions drive dissolved organic matter quantity and composition in a temporary Mediterranean stream, Biogeochemistry, 123, 1-18. 
  29. Wang, H., Chi, G., Zhang, S., Peng, C., Chen, X., Huang, B., and Li, J. (2022). Phosphorus leaching loss from mollisol with organic amendments, Social Science Research Network (SSRN), 4014905. 
  30. Weishaar, J. L., Aiken, G. R., Bergamaschi, B. A., Fram, M. S., Fujii, R., and Mopper, K., (2003). Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon, Environmental Science and Technology, 37, 4702-4708. 
  31. Yang, L., Chang, S. W., Shin, H. S., and Hur, J. (20 15). Tracking the evolution of stream DOM source during storm events using end member mixing analysis based on DOM quality, Journal of Hydrology, 523, 333-341. 
  32. Yang, L., Chen, W., Zhuang, W. E., Cheng, Q., Li, W., Wang, H., Guo, W., Chen C. T, A., and Liu, M. (2019). Characterization and bioavailability of rainwater dissolved organic matter at the southeast coast of China using absorption spectroscopy and fluorescence EEM-PARAFAC, Estuarine, Coastal and Shelf Science, 217, 45-55. 
  33. Young, M. B., McLaughlin, K., Kendall, C., Stringfellow, W., Roolog, M., Elsbury, K., Donald, E., and Paytan, A. (2009). Characterizing the oxygen isotopic composition of phosphate sources to aquatic ecosystems, Environmental Science and Technology, 43, 5190-5196. 
  34. Zsolnay, A., Baigar, E., Jimenez, M., Steinweg, B., and Saccomandi, F. (1999). Differentiating with fluorescence spectroscopy the sources of dissolved organic matter in soils subjected to drying, Chemosphere, 38, 45-50.