DOI QR코드

DOI QR Code

Effect of Ultrasound Treatment on Finishing of Cotton Fabrics using Chestnut Shell Extract

밤껍질 추출물에 의한 면직물 기능성 가공 시 초음파 보조처리의 영향

  • 홍경화 (공주대학교 의류상품학과)
  • Received : 2023.11.04
  • Accepted : 2023.11.29
  • Published : 2024.04.30

Abstract

Amid global environmental concerns, initiatives to adopt sustainable industrial processes have garnered significant attention in diverse sectors. Efforts have centered on utilizing natural resources as dyeing and functionalizing agents in the textile industry. However, the limited color fastness and functional endurance of natural compounds remains a substantial challenge. This research investigated whether ultrasound could enhance the finishing effect of natural compounds on cotton fabrics. Chestnut shell extract was prepared and applied to cotton fabrics using a pad-dry-cure technique, with concurrent application of ultrasonic power. Once integrated into the fabrics, the chestnut shell extract exhibited prolonged health benefits for users. The findings demonstrated that ultrasound treatment during the finishing process facilitated the diffusion of natural compounds from the chestnut shell extract into the fabric structure, resulting in a substantial enhancement of the finishing effect, notably augmenting the antibacterial properties of the treated cotton fabrics.

Keywords

Acknowledgement

본 논문은 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No. RS-2023-00208022).

References

  1. Alger, M. S. M. (1997). Polymer science dictionary. Chapman and Hall.
  2. An, J.-Y., Wang, L.-T., Lv, M.-J., Wang, J.-D., Cai, Z.-H., Wang, Y.-Q., Zhang, S., Yang, Q., & Fu, Y.-J. (2021). An efficiency strategy for extraction and recovery of ellagic acid from waste chestnut shell and its biological activity evaluation. Microchemical Journal, 160, 105616. https://doi.org/10.1016/j.microc.2020.105616
  3. Barreira, J. C. M., Ferreira, I. C. F. R., Oliveira, M. B. P. P., & Pereira, J. A. (2008). Antioxidant activities of the extracts from chestnut flower, leaf, skins and fruit. Food Chemistry, 107, 1106-1113. https://doi.org/10.1016/j.foodchem.2007.09.030
  4. Barreira, J. C. M., Ferreira, I. C. F. R., Oliveira, M. B. P. P., & Pereira, J. A. (2010). Antioxidant potential of chestnut (Castanea sativa L.) and almond (Prunus dulcis L.) by-products. Food Science and Technololy International, 16, 209-216.
  5. Chandra, S., Khan, S., Avula, B., Lata, H., Yang, M. H., Elsohly, M. A., & Khan, I. A. (2014). Assessment of total phenolic and flavonoid content, antioxidant properties, and yield of aeroponically and conventionally grown leafy vegetables and fruit crops: A comparative study. Evidence-Based Complementary and Alternative Medicine, 253875, 1-9. https://doi.org/10.1155/2014/253875
  6. Chen, C., & Chang, W. (2007). Antimicrobial activity of cotton fabric pretreated by microwave plasma and dyed with onion skin and onion pulp. Indian Journal of Fibre and Textile Research, 32, 122-125. http://nopr.niscpr.res.in/handle/123456789/304
  7. Duda-Chodak, A., Tarko, T., Satora, P., & Sroka, P. (2015). Interaction of dietary compounds, especially polyphenols, with the intestinal microbiota: A review. European Journal of Nutrition, 54, 325-341. https://doi.org/10.1007/s00394-015-0852-y
  8. Eid, B. M., & Ibrahim, N. A. (2021). Recent developments in sustainable finishing of cellulosic textiles employing biotechnology. Journal of Cleaner Production, 284(15), 124701. https://doi.org/10.1016/j.jclepro.2020.124701
  9. Farha, A. K., Yang, Q.-Q., Kim, G., Li, H.-B., Zhu, F., Liu, H.-Y., Gan, R.-Y., & Corke, H. (2020). Tannis as an alternative to antibiotics. Food Bioscience, 38, 100751. https://doi.org/10.1016/j.fbio.2020.100751
  10. Ferreira, A. S., Silva, A. M., Pinto, D., Moreira, M. M., Ferraz, R., Svarc-Gajic, J., Costa, P. C., Delerue-Matos, C., & Rodrigues, F. (2022). New perspectives on the sustainable employment of chestnut shells as active ingredient against oral mucositis: A first screening. International Journal of Molecular Sciences, 23(23), 14956. https://doi.org/10.3390/ijms232314956
  11. Fraga-Corral, M., Otero, P., Echave, J., Garcia-Oliveira, P., Carpena, M., Jarboui, A., Nunez-Estevez, B., Simal-Gandara, J., & Prieto, M. A. (2021). By-products of agri-food industry as tannin-rich sources: A review of tannins' biological activities and their potential for valorization. Foods, 10(1), 137. https://doi.org/10.3390/foods10010137
  12. Grand View Research. (n.d.). Functional textile finishing chemicals market size, share & trends analysis report by product (antimicrobial/anti-inflammatory, flame retardant, repellant & release, temperature regulation), by region, and segment forecasts, 2023-2030. https://www.grandviewresearch.com/industry-analysis/functional-textile-finishing-agents-market
  13. Guerald, G., Wang, H., Manners, I., & Winnik, M. A. (2008). Fragmentation of fiberlike structures: Sonication studies of cylindrical block copolymer micelles and behavioral comparisons to biological fibrils. Journal of the American Chemical Society, 130(44), 14763-14771. https://doi.org/10.1021/ja805262v
  14. Gulzar, T., Farooq, T., Kiran, S., Ahmad, I., & Hameed, A. (2019). Green chemistry in the wet processing of textiles. In Shahid-ul-Islam, & B. S. Butola (Eds.), The impact and prospects of green chemistry for textile technology (pp1-20). Elsevier. https://doi.org/10.1016/C2017-0-01957-2
  15. Haji, A. (2020). Plasma activation and chitosan attachment on cotton and wool for improvement of dyeability and fastness properties. Pigment and Resin Technology, 49(6), 483-489. https://doi.org/10.1108/PRT-02-2020-0017
  16. Hill, D. J. (1997). Is there a future for natural dyes? Review of Progress in Coloration and Related Topics, 27(1), 18-25. https://doi.org/10.1111/j.1478-4408.1997.tb03771.x
  17. Hong, K. H. (2021). Sustainable functional finishing for cotton fabrics using chestnut shell extract. Cellulose, 28, 11729-11743. https://doi.org/10.1007/s10570-021-04273-z
  18. Iqbal, S., & Ansari, T. N. (2021). Extraction and application of natural dyes. In L. J. Rather, M. Shabbir, & A. Haji (Eds.), Sustainable practices in the textile industry (pp. 1-40). Wiley. https://doi.org/10.1002/9781119818915.ch1
  19. Jeong, Y. O. (1997). The dyeability of natural dye extracted from chestnut shell. Korean Journal of Community Living Science, 82(2), 83-91.
  20. Jose, S., Gurumallesh Prabu, H., & Ammayappan, L. (2017). Eco-friendly dyeing of silk and cotton textiles using combination of three natural colorants. Journal of Natural Fibers, 14, 40-49. https://doi.org/10.1080/15440478.2015.1137530
  21. Jose, S., Pandit, P., & Pandey, R. (2019). Chickpea husk-A potential agro waste for coloration and functional finishing of textiles. Industrial Crops and Products, 142, 111833. https://doi.org/10.1016/j.indcrop.2019.111833
  22. Kamel, M. M., El-Shishtawy, R. M., Youssef, B. M., & Mashaly, H. (2007). Ultrasonic assisted dyeing. IV. Dyeing of cationised cotton with lac natural dye. Dyes and Pigments, 73, 279-284. https://doi.org/10.1016/j.dyepig.2005.12.010
  23. Kan, C. W. (2015). Plasma treatments for sustainable textile processing. In R. Blackburn (Ed.), Sustainable apparel, production, processing and recycling (pp. 263-268). Elsevier. https://doi.org/10.1016/C2014-0-02597-X
  24. Kim, B. (2003). Reelection device for dyeability of cotton fabrics with chestnut husk extract by bean sap pre-treatment. Journal of the Korea Fashion and Costume Design Association, 5(3), 15-23.
  25. Kim, M.-J., Kim, Y. G., Kim, H.-S., Cheong, C., Jang, K.-H., & Kang, S. A. (2014). Effects of antioxidant activities in ethanol extract of apple peel, grape peel, and sweet potato peel as natural antioxidant. Journal of the Korea Academia-Industrial cooperation Society, 15(6), 3766-3773. https:// doi.org/10.5762/KAIS.2014.15.6.3766
  26. Moure, A., Cruz, M., Franco, D., Dominguez, J. M., Sineiro, J., Dominguez, H., Nunez, M. J., & Parajo, J. C. (2001). Natural antioxidants from residual sources. Food Chemistry, 72(2), 145-171. https://doi.org/10.1016/S0308-8146(00)00223-5
  27. Pizzi, A. (2019). Tannins: Prospectives and actual industrial applications. Biomolecules, 9, 344. https://doi.org/10.3390/biom9080344
  28. Remy, N., Speelman, E., & Swartz, S. (2016, October 20). Style that's sustainable: A new fast-fashion formula. McKinsey & Company. https://www.mckinsey.com/capabilities/sustainability/our-insights/style-thats-sustainable-a-new-fast-fashion-formula
  29. Rodrigues, F., Santos, J., Pimentel, F. B., Braga, N., Palmeirade-Oliveira, A., & Oliveira, M. B. P. P. (2015). Promising new applications of Castanea sativa shell: Nutritional composition, antioxidant activity, amino acids and vitamin E profile. Food & Function, 6(8), 2854-2860. https://doi.org/10.1039/C5FO00571J
  30. Seo, H. Y., Kim, H. R., & Song, W. S. (2011). Effects of chestnut hulls mordant on oenothera odorata jacguin-dyed fabrics. Fashion & Textile Research Journal, 13(6), 983-989. https://doi.org/10.5805/KSCI.2011.13.6.983
  31. Shojaeiarani, J., Bajwa, D., & Holt, G. (2020). Sonication amplitude and processing time influence the cellulose nanocrystals morphology and dispersion. Nanocomposites, 6(1), 41-46. https://doi.org/10.1080/20550324.2019.1710974
  32. Singleton, V. L., Orthofer, R., & Lamuela-Raventos, R. M. (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods in Enzymology, 299, 152-178. https://doi.org/10.1016/S0076-6879(99)99017-1
  33. Thakker, A. M., & Sun, D. (2021). Sustainable plant-based bioactive materials for functional printed textiles. The Journal of the Textile Institute, 112(8), 1324-1358. https://doi.org/10.1080/00405000.2020.1810474
  34. Ultrasound. (2023, September 16). In Wikipedia. https://ko.wikipedia.org/wiki/%EC%B4%88%EC%9D%8C%ED%8C%8C
  35. UN environment programme. (2018, November 12). Putting the brakes on fast fashion. https://www.unep.org/news-and-stories/story/putting-brakes-fast-fashion
  36. Vazquez, G., Gonzalez-Alvarez, J., Santos, J., Freire, M. S., & Antorrena, G. (2009). Evaluation of potential applications for chestnut (Castanea sativa) shell and eucalyptus (Eucalyptus globulus) bark extracts. Industrial Crops and Products, 29(2-3), 364-370. https://doi.org/10.1016/j.indcrop.2008.07.004
  37. Vazquez, G., Fontenla, E., Santos, J., Freire, M. S., Gonzalez-Alvarez, J., & Antorrena, G. (2008). Antioxidant activity and phenolic content of chestnut (Castanea sativa) shell and eucalyptus (Eucalyptus globulus) bark extracts. Industrial Crops and Products, 28(3), 279-285. https://doi.org/10.1016/j.indcrop.2008.03.003
  38. Virgili, F., & Marino, M. (2008). Regulation of cellular signals from nutritional molecules: A specific role for phytochemicals, beyond antioxidant activity. Free Radical Biology and Medicine, 45(9), 1205-1216. https://doi.org/10.1016/j.freeradbiomed.2008.08.001
  39. Woo, Y., Lee, H., Jeong, Y. S., Shin, G. Y., Oh, J. G., Kim, J. S., & Oh, J. (2017). Antioxidant potential of selected Korean edible plant extracts. Biomed Research International, 2017, 7695605. https://doi.org/10.1155/2017/7695605
  40. Yoo, H.-J., Lee, H. J., & Lim, J. H. (1998). Fabrics dyeing using natural dyestuff manufactured from chestnut hulls. Journal of the Korean Society of Clothing and Textiles, 22(4), 469-476.
  41. Yusuf, M., Ahmad, A., Shahid, M., Khan, M. I., Khan, S. A., Manzoor, N., & Mohammad, F. (2012). Assessment of colorimetric, antibacterial and antifungal properties of woollen yarn dyed with the extract of the leaves of henna (Lawsonia inermis). Journal of Cleaner Production, 27, 42-50. https://doi.org/10.1016/j.jclepro.2012.01.005
  42. Zhang, Y.-J., Gan, R.-Y., Li, S., Zhou, Y., Li, A.-N., Xu, D.-P., & Li, H.-B. (2015). Antioxidant phytochemicals for the prevention and treatment of chronic diseases. Molecules, 20(12), 21138-21156. https://doi.org/10.3390/molecules201219753