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Untargeted metabolomics using liquid chromatography-high 
resolution mass spectrometry and chemometrics for analysis of 
non-halal meats adulteration in beef meat

Anjar Windarsih1,2, Nor Kartini Abu Bakar1, Abdul Rohman3,4,*,  
Nancy Dewi Yuliana5, and Dachriyanus Dachriyanus6

Objective: The adulteration of raw beef (BMr) with dog meat (DMr) and pork (PMr) 
becomes a serious problem because it is associated with halal status, quality, and safety 
of meats. This research aimed to develop an effective authentication method to detect 
non-halal meats (dog meat and pork) in beef using metabolomics approach.
Methods: Liquid chromatography-high resolution mass spectrometry (LC-HRMS) using 
untargeted approach combined with chemometrics was applied for analysis non-halal meats 
in BMr.
Results: The untargeted metabolomics approach successfully identified various metabolites 
in BMr DMr, PMr, and their mixtures. The discrimination and classification between 
authentic BMr and those adulterated with DMr and PMr were successfully determined 
using partial least square-discriminant analysis (PLS-DA) with high accuracy. All BMr 
samples containing non-halal meats could be differentiated from authentic BMr. A number 
of discriminating metabolites with potential as biomarkers to discriminate BMr in the 
mixtures with DMr and PMr could be identified from the analysis of variable importance 
for projection value. Partial least square (PLS) and orthogonal PLS (OPLS) regression using 
discriminating metabolites showed high accuracy (R2>0.990) and high precision (both 
RMSEC and RMSEE <5%) in predicting the concentration of DMr and PMr present in 
beef indicating that the discriminating metabolites were good predictors. The developed 
untargeted LC-HRMS metabolomics and chemometrics successfully identified non-halal 
meats adulteration (DMr and PMr) in beef with high sensitivity up to 0.1% (w/w).
Conclusion: A combination of LC-HRMS untargeted metabolomic and chemometrics 
promises to be an effective analytical technique for halal authenticity testing of meats. This 
method could be further standardized and proposed as a method for halal authentication 
of meats.
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INTRODUCTION

Meat adulteration using non-halal meats is a serious matter because certain religions such 
as Muslim and Judaism are not allowed to consume non-halal foods. Moreover, Muslim 
applies the strict regulation regarding halal products according to the Shariah law. Halal is 
not only associated with religion but also to a healthy life style [1]. The demand for halal 
foods has been reported to be increasing worldwide due to their quality and safety [2]. 
Beef (BMr) is one of the favorite meats consumed by people around the world due to its 
high nutrition and taste. In market place, the price of BMr is higher compared to other 
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meats, thus make it prone for adulteration [3]. Non-halal meat 
such as dog meat (DMr) and pork (PMr), are widely spread 
in Southeast Asia countries including Indonesia, Malaysia, 
and Thailand. These meats have a lower price and similar 
physical appearances as beef. DMr and PMr are often mixed 
with beef and labelled as pure beef to get the additional profits 
by unethical players and producers [4]. This is a serious prob-
lem because it could harm consumers.
  Various analytical methods such as gas chromatography 
[5], liquid chromatography [6], Fourier transform infrared 
spectroscopy [7], near infrared spectroscopy [8], Raman 
spectroscopy [9], and DNA-based methods [10] have been 
developed for the detection of non-halal meats in meats and 
meat-based products. Methods based on molecular analysis 
such as polymerase chain reaction (PCR) and real-time PCR 
to detect a DNA target have been widely applied for meat 
authentication purposes, some countries even apply RT-PCR 
as the standard method [11]. However, several factors such 
as processing treatments and temperature could degrade 
DNA, therefore, sometimes the non-halal DNA can not be 
detected using RT-PCR [12,13]. Moreover, RT-PCR technique 
is not a simple technique because of its complex sample 
preparation steps and costly reagents [14]. Therefore, the de-
velopment of powerful and robust analytical methods to 
detect non-halal meats with high accuracy and high repro-
ducibility is a must.
  Recently, the omics technology such as metabolomics has 
been widely applied in numerous research including analysis 
and authentication of foods [15]. Metabolomics is a compre-
hensive study intended to identify an enormous number of 
metabolites from certain samples at a particular condition 
[16]. Metabolomics could be used for the identification of 
metabolites composition in meats and to investigate the dif-
ference of metabolites among meats [17]. The untargeted 
metabolomics approach demonstrates some advantages for 
authentication of food products due to its capability to screen 
as many metabolites as possible in food products. Liquid 
chromatography-high resolution mass spectrometry (LC-
HRMS) has been used for untargeted metabolomics research 
because of its capability for metabolites screening with high 
throughput capacity. Moreover, it has high sensitivity, high 
specificity, and high resolving power for metabolomics analysis 
[18]. 
  The advanced statistical tools such as chemometrics, is 
obviously required for untargeted metabolomics approach 
due to the vast amount of data resulting from an untargeted 
measurement. Chemometrics could be used to handle and 
process the huge data from untargeted LC-HRMS metabo-
lomics analysis [19]. Some of the chemometrics techniques 
such as pattern recognition using principal component anal-
ysis (PCA), discriminant analysis (DA), partial least square 
discriminant analysis (PLS-DA), soft independent modelling 

class analogy (SIMCA) along with multivariate calibrations 
of partial least square (PLS) and principle component re-
gression and many more [20] have been used during food 
authentication. The combination of metabolomics analysis 
using Liquid chromatography-mass spectrometry (LC-MS) 
based method and chemometrics has been widely used in 
various research for food authentication including halal au-
thentication analysis of meats. Chemometrics analysis could 
be used to identify halal and non-halal samples based on 
their metabolite patterns. Moreover, chemometrics has the 
capability to investigate potential biomarkers which are very 
useful for the identification and differentiation of the studied 
samples [20,21].
  Differentiation of chicken meats obtained from two slaugh-
tering methods, zabiha (halal) and non-zabiha (non-halal) 
was successfully performed using untargeted LC-HRMS 
metabolomics [22]. A study on the metabolite differences 
between chicken meats obtained from normal slaughtering 
and dead-on chicken meats has also been performed by 
Sidwick et al [23] using LC-HRMS combined with chemo-
metrics. Moreover, detection of pork adulteration in beef 
by focusing on lipid metabolites has been investigated by 
using LC-HRMS untargeted approach. Some potential bio-
markers important for such differentiation also could be 
extracted using chemometrics analysis [24]. The presence 
of pork as adulterant in beef meatballs has also been suc-
cessfully analyzed using LC-HRMS and pattern recognition 
chemometrics by employing an untargeted metabolomics 
approach. Moreover, multivariate regression was applied to 
create a prediction model [25]. However, studies on the 
analysis of non-halal meats such as pork and dog meat in 
high quality of halal meats using an untargeted LC-HRMS 
metabolomics and chemometrics are still limited.
  To our best knowledge, there is no report on the analysis 
of DMr and PMr adulteration in beef for halal authentication 
using a non-targeted LC-HRMS metabolomics combined 
with chemometrics. Therefore, the main objective of this 
study was to develop an analytical method for halal authen-
tication of beef from DMr and PMr adulteration by employing 
an untargeted LC-HRMS metabolomics. In addition, chemo-
metrics was applied to identify discriminating metabolites 
potential for biomarkers important for the differentiation of 
samples.

MATERIALS AND METHODS

Materials
All LC-MS hypergrade solvents (methanol, water, acetonitrile), 
HPLC grade solvent of methanol, and formic acid were ob-
tained from Merck (Darmstadt, Germany). The standard 
solution of positive and negative calibration solution (Pierce 
LTQ positive and negative) for mass spectrometry were pur-
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chased from Thermo Fisher Scientific (Rockford, IL, USA).

Sample collection and preparation
Beef (n = 5) sample was obtained from five different markets 
in Yogyakarta and Central Java, Indonesia. Pork (n = 3) and 
dog meat (n = 3) were purchased from three different meat 
sellers in Yogyakarta, Indonesia. The loin part was used for 
metabolomics analysis. The meat samples were stored at 
–20°C prior used for extraction. Each type of meat was ground 
using a meat grinder to obtain ground meat, then stored to 
–20°C until used for analysis. Each meat obtained from all 
locations were mixed. The samples of pure beef, pork, and 
dog meat as well as the binary mixtures of beef-pork and 
beef-dog meat were prepared in triplicates.

Metabolite extraction
The extraction of metabolites for metabolomics analysis was 
carried out based on the method by Wang et al [14] subjected 
to slight modifications. Pure BMr samples and those adul-
terated with DMr and PMr using various concentration 
levels (0.1%, 1%, 5%, 10%, 25%, and 50% w/w) were pre-
pared. The ground meat was weighed, and the mixtures 
were prepared in a total weight of 5 g. Samples were placed 
into a Beaker glass and added with methanol (25 mL). Sub-
sequently, samples were vortexed for 60 s, then ultrasonicated 
for 30 min at room temperature. The protein was precipitated 
by storing the samples at –20°C for 1 hour. The supernatant 
was collected by centrifugation for 10 min at 4°C at 5,000 
rpm. The 1 mL of supernatant was pipetted and filtered using 
PTFE filter 0.22 μm. The filtered supernatant was placed 
into a clear 2 mL HPLC vial. Three replicates of each sample 
were prepared.

Metabolomics analysis
Metabolomics was performed according to our previous 
study with slight modifications [25]. Separation of com-
pounds was carried out using an ultra-high performance 
liquid chromatography (UHPLC Vanquish; Thermo Scien-
tific, Rockford, IL, USA) equipped with a binary pump. 
Two mobile phases consisted of water containing 0.1% formic 
acid (A) and methanol containing 0.1% formic acid (B) were 
used for eluting sample with the flow rate of 0.30 mL/min. 
An Accucore C-18 column (100 mm×2.1 mm×2.6 μm) was 
used for separating metabolites in samples which was in-
jected at 10 μL. The temperature of column was set at 40°C 
during the compound’s separation. Elution was carried out 
using gradient mode as follows; at first, the mobile phase 
was set at 95% A, then continue to for 10% A at 16 min. 
Then, maintained at 10% A until 30 min before setting back 
to 95% A (35 min). The detection of compounds was per-
formed using a high-resolution mass spectrometer (Orbitrap 
Q-Exactive; Thermo Scientific, USA). The flow rate setting 

for sheath gas was 32 arbitrary unit (AU), followed by aux-
iliary gas of 8 AU and sweep gas of 4 AU, respectively. The 
setting for parameter of capillary temperature was 320°C 
followed by gas heater temperature of 30°C. The ionization 
was performed in both electro spray ionization (ESI) posi-
tive and ESI negative modes with MS1 resolution of 70,000 
and MS2 resolution of 17,500. The screening of compounds 
was carried out at m/z range of 66.7 to 1,000 m/z.

Data processing
The Compound Discoverer (Thermo Scientific, USA) soft-
ware was used to identify metabolites composition in BMr, 
DMr, PMr, and their mixtures. The raw total ion chromato-
gram (TIC) both of sample and blank was used for analysis. 
Spectrum selection, retention time alignment, feature de-
tection, and metabolite identification were performed. The 
Chemspider and MzCloud database were used for database 
matching. Analysis was performed using an untargeted 
workflow. Only metabolites having full match MS2 frag-
mentation and error mass between –5 and 5 ppm were 
selected. The metabolite dataset was converted into an excel 
file for chemometrics analysis.

Chemometrics analysis X
The selected metabolites from metabolite identification analy-
sis were used as variables for chemometrics. The data were 
subjected to unit variance scaling prior to chemometrics 
analysis. Both pattern recognition and multivariate calibra-
tion chemometrics were applied. Chemometrics analysis was 
conducted using a SIMCA 14.1 (Umetrics, Umea, Sweden) 
software and Metaboanalyst 5.0 platform. Principal compo-
nent analysis was performed and observed using PCA score 
plot, PCA loading plot, R2, and Q2 values. The PLS-DA was 
further used and evaluated using R2X, R2Y, Q2 values, loading 
score and loading plot. Validation tests such as permutation 
test, predicted residual error sum of squares (PRESS) value, 
and receiver operating characteristics (ROC) test were used 
for PLS-DA. The identification of discriminating metabolites 
potential as metabolite markers was conducted using vari-
able importance for projection (VIP) test by identifying the 
variables with VIP more than 1.0. The metabolites were then 
subjected to analysis of variance (ANOVA) analysis. Metab-
olites were with p-value <0.05 were considered as significant 
metabolites in line with the increase of pork and dog meat 
levels. Multivariate calibration of PLS as well as its orthogonal 
form (OPLS) was used to build prediction model. The models 
were evaluated using the PLS plot, R2, and the residual plot. 
Validation of PLS dan OPLS was performed using root 
mean square error of cross validation (RMSECV) and root 
mean square error of estimation (RMSEE). 



www.animbiosci.org  921

Windarsih et al (2024) Anim Biosci 37:918-928

RESULTS AND DISCUSSION

Metabolomics analysis using LC-HRMS
Metabolomics analysis using LC-HRMS employing an un-
targeted workflow revealed a wide number of metabolites 
contained in BMr, DMr, and PMr. Figure 1 shows the TIC 
from BMr, DMr, and PMr exported from XCalibur software. 

In general, the samples showed a similar TIC pattern, how-
ever, deep investigation found some peak differences at the 
retention time between 14.0 and 24.0 min. Analysis on the 
TIC against the databases using Compound Discoverer soft-
ware could retrieve the metabolite compositions on each 
sample. Figure 2 illustrates the identified metabolites from 
beef-dog meat and beef-pork series measured using LC-

Figure 1. Total ion chromatogram (TIC) of beef meat (BMr), dog meat (DMr), and pork meat (PMr) measured at retention time between 0.0 and 
35.0 min (A) and at retention time between 14.0 and 24.0 min (B).
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Figure 2. Classification and proportion of the identified metabolites in beef-dog meat series (A) and beef-pork series (B).
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HRMS metabolomics. Fatty acyls class placed at the highest 
proportion followed by lipids in both sample series which 
consist of various types of fatty acids and polar lipids such as 
phospholipids. Various types of amino acids and organic acids 
were also identified. The results was in accordance with pre-
vious reports as fatty acids, lipids, and amino acids were 
reported to be present in high amount in meats [26]. In ad-
dition, it was found that creatine had the highest peak area 
in all types of meat (BMr, DMr, and PMr), followed by car-
nitine. It was in agreement with previous research reporting 
that meats such as beef, pork, and chicken contained high 
amount of creatine and carnitine [27]. Due to the complexity 
of the identified metabolites in BMr, DMr, and PMr samples, 
therefore, an advanced statistical tool is required to analyze 
the data for the authentication purposes to guarantee the re-
sults.

Chemometrics of pattern recognition
In this study, PCA was first applied to observe the pattern of 
samples grouping based on their metabolite compositions. 
Using seven principal components (PCs), PCA could differ-
entiate pure BMr samples with those adulterated with DMr 
at several concentration levels, especially in high levels of 
DMr (10%, 25%, and 50%) with R2 = 0.877 and Q2 = 0.577. 
However, in the presence of low concentration of DMr (0.1%, 
1%, and 5%), PCA could not clearly differentiate between 
pure and adulterated samples (Figure 3A). On the other hand, 
PCA using five PCs subjected to metabolites data from beef-
pork series cloud clearly differentiate authentic BMr, BMr 
adulterated PMr, and pure PMr with R2 = 0.680 and Q2 = 
0.403 as depicted in Figure 3B. The tight cluster of the quality 
control (QC) samples in the PCA score plot confirmed the 
stability and the reproducibility of the LC-HRMS method in 
both sample series. PCA is an unsupervised pattern recogni-

Figure 3. The score plot of principal component analysis to differentiate authentic beef from dog meat adulteration (A) and pork adulteration (B). 
BMr = 100% beef; DMr = 100% dog meat; PMr = 100% pork, the number before samples code indicates the percentage of adulterant added in beef; 
QC = quality control samples.
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tion that has been widely used in many fields of research 
including metabolomics to find out the similarity and dis-
similarity among samples by reducing the number of 
original variables into few PCs. Samples with score plots ap-
peared close to each other indicates high similarity and vice 
versa [19]. In this study, the obtained PCA showed that the 
higher the presence of adulterant in BMr, the closer the score 
plot to the score plot of adulterant both in beef-dog and 
beef-pork model. However, the separation among levels in 
adulterated samples is not clear enough such as a few of score 
plots are still overlapping. It might be caused by losing some 
information or data distortion when reducing the data di-
mensionality [16].

  To confirm the PCA results, supervised pattern recogni-
tion of PLS-DA was further used to discriminate and classify 
samples. PLS-DA using four latent variables (LV) clearly dis-
criminated BMr, BMr adulterated DMr, and DMr samples 
with R2X = 0.797, R2Y = 0.961, and Q2 = 0.803. The score 
plot of PLS-DA in Figure 4A shows that the lowest level of 
DMr (0.1%) was clearly discriminated from the authentic 
BMr indicating a good performance of the PLS-DA model 
for discriminating adulterated samples at low concentration 
of adulterant. In addition, PLS-DA was also successfully used 
to discriminate between authentic and adulterated BMr with 
PMr, with high accuracy as depicted in Figure 4B. Using 9 
LV, PLS-DA could detect and discriminate all adulterated 

Figure 4. The score plot of partial least square-discriminant analysis to discriminate authentic beef meat from adulteration with dog meat (A) and 
pork meat (B). BMr = 100% beef; DMr = 100% dog; PMr = 100% pork, the number before samples code indicates the percentage of adulterant added 
in beef; QC = quality control samples.
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samples from the authentic BMr samples with R2X = 0.774, 
R2Y = 0.960, and R2Y = 0.563. According to the PLS-DA 
score plot, the higher the level of the adulterants given, the 
closer the score plot to the adulterant meat, observed in both 
models. The table of misclassification test showed there is no 
misclassification found in both PLS-DA model of beef-dog 
and beef-pork series indicating the high accuracy of the clas-
sification models. In addition, the stability and reproducibility 
of the LC-HRMS method was confirmed by the tight cluster 
of QC samples. 
  Supervised PLS-DA is a combination of PLS regression 
and linear discriminant analysis. The PLS model was first 
built using the X matrix (independent variables), followed 
by Y matrix (dependent variables). Subsequently, the LV, 
also called factors were searched and used for classification. 
These LV made PLS-DA capable of returning better sample 
differentiation than using PCA. This result was in agreement 
with previous studies reporting the suitability of PLS-DA for 
sample classification of meat from different origins, for de-
tection of pork in halal meats, and for metabolite differentiation 
of chicken during storage [14,28]. 
  However, supervised pattern recognition such as PLS-DA 
is susceptible for model overfitting thereby could provide 
bias result. Therefore, such validation tests including permu-
tation test and ROC test are often required to demonstrate 
the model validity. The permutation test performed using 
999 permutations confirmed the validity of PLS-DA model 
both in BMr adulterated DMr and BMr adulterated PMr 
series. In the BMr adulterated DMr model, permutation 

using six components showed that the original variables 
had the highest value among all the permutated models with 
the intersection of Q2 value was between zero and below 
zero, (0.0, –0.231). Meanwhile, in the BMr adulterated PMr, 
permutation test using 8 components demonstrated the 
intersection value of Q2 of (0.0, –0.616) indicating model 
validity. The result of ROC test demonstrated the PLS-DA 
model validity supporting the permutation test. All samples 
were accurately classified in accordance with the result of 
misclassification test demonstrated by its AUC (area under 
the curve) of each class. The AUC value for each sample 
class obtained from both PLS-DA models was 1, exhibiting 
a good classification without misclassification [29].

Identification of discriminating metabolites
The identification of variables having important role in 
samples differentiation which associated to discriminating 
metabolites samples differentiation was performed using 
the VIP value. These discriminating metabolites were im-
portant as potential biomarker candidates to discriminate 
non-halal meats in beef. The variables having an important 
role in samples differentiation are shown by the VIP value 
more than 1.0. The discriminating metabolites from VIP 
analysis of beef-dog series are shown in Supplementary Table 
S1. Among those metabolites, 19 metabolites were found 
to increase with the increase of DMr levels in BMr (Table 
1). Meanwhile, the discriminating metabolites from beef-
pork series are listed in Supplementary Table S2. Further 
analysis showed that 28 metabolites were observed to in-

Table 1. Metabolites that increased in peak area with percentage of dog meat adulteration in beef obtained from variable importance for projec-
tions (VIP) value

No. Compounds Formula RT (min) Calculated m/z Mass 
error VIP value p-value 

(ANOVA)

1 Hypoxanthine C5H4N4O 0.918 136.03816 –2.61 1.99 4.69 × 10-8

2 5-Aminoimidazole ribotide C8H14N3O7P 0.671 295.05803 3.72 1.92 6.26 × 10-7

3 2-[(5Z)-5-Tetradecenyl]cyclobutanone C18H32O 20,336 264.24468 –2.39 1.87 4.16 × 10-9

4 L-Tyrosine C9H11NO3 1.055 181.07339 –2.77 1.81 3.17 × 10-7

5 Ethyl myristate C16H32O2 20.139 256.23973 –1.94 1.73 9.12 × 10-5

6 D-Pantothenic acid C9H17NO5 2.808 219.11042 –1.17 1.68 0.0011
7 His-asp (L-histidyl-L-aspartic acid) C10H14N4O5 0.691 270.09510 –4.89 1.66 0.0013
8 3-(Icosanoyloxy)-4-(trimethylammonio)butanoate C27H53NO4 18.558 455.39655 –2.00 1.65 2.29 × 10-4

9 L-Gamma-glutamyl-L-leucine C11H20N2O5 2.557 260.13707 –0.58 1.64 0.0076
10 Citric acid C6H8O7 0.963 192.02630 –3.67 1.62 0.0064
11 2,3-Dihydroxybutanamide C4H9NO3 0.775 119.05824 0.00 1.61 3.23 × 10-5

12 DL-Arginine C6H14N4O2 0.704 174.11137 –1.78 1.58 0.0106
13 C8-Carnitine C15H29NO4 10.400 287.20945 –0.72 1.34 3.59 × 10-10

14 1-Oleoyl-2-hydroxy-sn-glycero-3-PE C23H46NO7P 18.863 479.30047 –1.50 1.34 7.18 × 10-12

15 9,12-Hexadecadienoylcarnitine C23H41NO4 15.747 395.30301 –1.39 1.27 > 0.05
16 L-Alpha-glycerylphosphorylcholine C8H20NO6P 0.767 257.10231 –2.01 1.26 > 0.05
17 L-(-)-Methionine C5H11NO2S 0.867 149.05078 –1.81 1.24 > 0.05
18 (2R)-1-{[(2-Aminoethoxy)(hydroxy)phosphoryl]oxy} 

 -3-hydroxy-2-propanyl (11Z)-11-icosenoate
C25H50NO7P 18.212 507.33151 –1.93 1.23 0.0118

19 Trans-3-indoleacrylic acid C11H9NO2 3.485 187.06302 –1.66 1.21 > 0.05
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crease with the increase of pork level in beef (Table 2). The 
discriminating metabolites were cross confirmed using the 
ANOVA analysis [24]. Metabolites with p<0.05 were sig-
nificant metabolites, that increase with increasing dog meat 
and pork levels in beef, respectively. The discriminating 
metabolites that increased in line with the level of adulterants 
consisted of various metabolites classes such as amino acids, 
organic acids, fatty acids, and other lipids. These significant 
metabolites could be used as the keys to detect and monitor 
the presence of dog meat and pork, respectively. 
  On the other hand, the area of metabolites acetyl-L-carni-
tine, DL-carnitine, C12-carnitine, and C14-carnitine were 
found to be high in BMr and increased as the level of BMr 
increased in both series. Carnitine is derived from amino 
acids, and it is endogenously synthesized in the liver, kidney, 
and brain from the amino acids of methionine and lysine. 
Carnitine is reported to be high in beef and it plays an im-
portant role in turning fat into energy. In addition, it eliminates 

some toxic compounds by transporting them out of mito-
chondria [30]. From the above results, it can be summarized 
that the utilization of VIP analysis is very beneficial to ana-
lyze metabolomics data from untargeted LC-HRMS to 
obtain discriminating metabolites to discriminate beef from 
dog and pork meat adulteration.

Chemometrics of multivariate calibration
The metabolites obtained from VIP analysis (VIP>1.0) were 
subjected to multivariate regression analysis using PLS re-
gression and OPLS regression. Partial least square was 
successfully used to accurately predict the levels of DMr 
and PMr in the adulterated beef (% w/w), respectively. A 
high correlation between actual values and predicted values 
of DMr in adulterated BMr was obtained (Figure 5A and 
5C). The PLS model had a high R2 value (0.9986) which is 
associated to its high model accuracy. In addition, the 
model had a low value of RMSEE (1.30%) and RMSECV 

Table 2. Metabolites that increased in peak area with percentage of pork adulteration in beef meat obtained from variable importance for projec-
tions (VIP) value

No. Compounds Formula RT Calculated 
m/z

Mass 
error VIP value p-value 

(ANOVA)

1 Adrenic acid C22H36O2 20.515 332.27050 –3.11 2.24 5.83 × 10–8

2 Nicotinamide C6H6N2O 0.931 122.04789 –1.01 2.23 4.35 × 10–10

3 Linoleic acid C18H32O2 19.556 280.23926 –3.45 2.22 2.00 × 10-15

4 Gluconic acid C6H12O7 0.756 196.05750 –4.09 2.13 5.26 × 10–5

5 Arabinosylhypoxanthine C10H12N4O5 1.311 268.08048 –1.08 2.10 7.42 × 10–5

6 (2R)-3-Hydroxy-2-[(9Z,12E)-9,12-octadecadienoyloxy]
propyl 2-(trimethylammonio)ethyl phosphate

C26H50NO7P 18.123 519.33129 –2.32 2.00 2.28 × 10–7

7 C8-Carnitine C15H29NO4 10.262 287.20950 –0.56 1.89 1.88 × 10–10

8 Acetyl-β-methylcholine C8H17NO2 0.715 159.12582 –0.71 1.85 3.30 × 10–5

9 Dihydrothymine C5H8N2O2 0.752 128.05863 0.38 1.83 0.006
10 1-Methylhistidine C7H11N3O2 0.621 169.08496 –0.97 1.82 2.05 × 10–5

11 3beta-hydroxy-4beta-methyl-5alpha-cholest-7-ene 
 -4alpha-carboxylic acid

C29H48O3 23.613 444.35927 –2.42 1.79 1.33 × 10–14

12 3-Hydroxy-3-[(3-methylbutanoyl)oxy] 
 -4-(trimethylammonio)butanoate

C12H23NO5 1.286 261.15737 –0.97 1.75 7.57 × 10–23

13 1-Palmitoyl-2-hydroxy-sn-glycero-3-PE C21H44NO7P 18.724 453.28470 –1.84 1.73 1.25 × 10–4

14 Oleic acid C18H34O2 20.442 282.25542 –1.65 1.69 0.0029
15 Azelaic acid C9H16O4 9.798 188.10413 –3.88 1.67 2.85 × 10–4

16 C14-Carnitine C21H41NO4 15.874 371.30286 –1.89 1.67 > 0.05
17 α-Aspartylphenylalanine C13H16N2O5 3.714 280.10588 –0.16 1.63 > 0.05
18 3-(Icosanoyloxy)-4-(trimethylammonio)butanoate C27H53NO4 18.411 455.39654 –2.01 1.56 > 0.05
19 4-Hydroxy-3-(sulfooxy)benzoic acid C7H6O7S 0.184 233.98244 –4.18 1.50 0.0156
20 Dibenzylamine C14H15N 7.171 197.12018 –1.35 1.48 0.0044
21 Arachidonic acid C20H32O2 19.460 304.23990 –1.09 1.47 4.73 × 10–5

22 8Z,11Z,14Z-Eicosatrienoic acid C20H34O2 20.004 306.25524 –2.09 1.41 > 0.05
23 3-Hydroxyoctanoylcarnitine C15H29NO5 7.910 303.20425 –1.07 1.35 0.0043
24 Choline C5H13NO 19.642 103.09975 0.39 1.28 0.0032
25 (4S)-4-{[(9Z)-3-Hydroxy-9-hexadecenoyl]oxy} 

 -4-(trimethylammonio)butanoate
C23H43NO5 15.420 413.31357 –1.35 1.25 > 0.05

26 Stearamide C18H37NO 20.165 283.28672 –2.81 1.20 7.20 × 10–4

27 Leu-Leu (N-L-Leucyl-L-leucine) C12H24N2O3 5.827 244.17861 –0.32 1.15 > 0.05
28 D-(+)-Proline C5H9NO2 0.776 115.06331 –0.18 1.06 9.09 × 10–4

VIP, variable importance for projections; RT, retention time; ANOVA, analysis of variance.
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(2.02%), associating to low error and high precision of the 
PLS model. In addition, PLS also successfully predict the 
levels of PMr present in BMr with high accuracy and high 
precision. The model provided R2 = 0.9981 with RMSEE of 
1.60% and RMSECV of 2.70%. On the other hand, the re-
gression of orthogonal PLS (OPLS) has also been widely 
applied for predicting target of analytes employing the or-
thogonal components. In this study, OPLS model was 
successfully detect and predict the adulterants of DMr and 
PMr in BMr as exemplified in Figure 5B and 5D. The ob-
tained R2 was 0.9986 and 0.9981 with RMSEE of 1.30% and 
1.60% for beef-dog and beef-pork series, respectively. In 
addition, the RMSECV value was 1.92% and 2.73% for 
beef-dog meat and beef-pork series, respectively. 
  Analysis on the residual plot both in PLS and OPLS mod-
els showed that all the residuals value were randomly spread 
and located at the standard deviation values between –4 and 
+4. This result indicated that the residuals were normally 
distributed, and no outliers were detected. The results showed 
that both PLS and OPLS regression had a similar performance 
in predicting targets. The results of PLS and OPLS demon-
strated that the discriminating metabolites obtained from 
VIP analysis were good predictors to build a prediction 
model to determine levels of dog and pork meat present as 

adulterants in beef meat. Therefore, PLS and OPLS regression 
could be used to support the results of VIP analysis in inves-
tigating the discriminating metabolites potential as biomarker 
candidates to differentiate non-halal meats adulteration in 
halal meats.
  PLS-based regression become the most multivariate cali-
bration techniques applied in various analysis to predict the 
concentration of targeted analytes in the presence of other 
substances or matrices, because it could be used for accurate 
prediction of the target. The use of LV to correlate X-matrix 
and Y-matrix in the regression analysis results in high pre-
dicting capacity. Some studies have successfully applied PLS 
for halal authentication by detection of lard in edible fats and 
detection of pork in meat and meat-based products using 
spectroscopic techniques [31]. The discriminating metabo-
lites of pork have been successfully confirmed as good 
predictors for pork adulteration by PLS and OPLS [25]. 
Another research also successfully used PLS to verify the 
role of discriminating metabolites in tea with different storage 
times. Result reveled that the discriminating metabolites 
were good predictors of storage time [32]. In our study, the 
result showed that both PLS and OPLS was potential for 
accurate prediction of DMr and PMr as the adulterants in 
halal beef meat.

Figure 5. Plot of partial least square regression from beef-dog (A) and beef-pork dataset (C) and plot of orthogonal partial least square regression 
from beef-dog (B) and beef-pork (D) dataset.
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  In metabolomics study, it should be noted that the com-
plexity of metabolomics data and its interpretation is not an 
easy task. Several factors such as the difference in diets, origins, 
environmental factors, meat preparation, and storage could 
affect the metabolites. In this study, we found a panel of me-
tabolites which strongly associated with the increasing levels 
of dog meat and pork adulteration in minced beef. However, 
further investigation on the effect of factors that might affect 
the metabolites is required for future research to verify the 
metabolites found.

CONCLUSION

The untargeted metabolomics approach using LC-HRMS 
combined with chemometrics could be an effective and 
powerful analytical technique for authentication of halal 
meats from non-halal meats adulteration. Further research 
using larger samples with various types of meats from different 
sources should be developed to warrant its reproducibility. 
Next, method standardization is required to obtain standard 
analytical method for halal testing of meats and meat-based 
food products. 
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