DOI QR코드

DOI QR Code

Multiomics analyses of Jining Grey goat and Boer goat reveal genomic regions associated with fatty acid and amino acid metabolism and muscle development

  • Zhaohua Liu (Institute of Animal Science and Veterinary Medicine, Shandong Key Lab of Animal Disease Control and Breeding, Shandong Academy of Agricultural Sciences) ;
  • Xiuwen Tan (Institute of Animal Science and Veterinary Medicine, Shandong Key Lab of Animal Disease Control and Breeding, Shandong Academy of Agricultural Sciences) ;
  • Qing Jin (Institute of Animal Science and Veterinary Medicine, Shandong Key Lab of Animal Disease Control and Breeding, Shandong Academy of Agricultural Sciences) ;
  • Wangtao Zhan (Shandong Animal Husbandry General Station) ;
  • Gang Liu (Shandong Animal Husbandry General Station) ;
  • Xukui Cui (Institute of Animal Science and Veterinary Medicine, Shandong Key Lab of Animal Disease Control and Breeding, Shandong Academy of Agricultural Sciences) ;
  • Jianying Wang (Institute of Animal Science and Veterinary Medicine, Shandong Key Lab of Animal Disease Control and Breeding, Shandong Academy of Agricultural Sciences) ;
  • Xianfeng Meng (Institute of Animal Science and Veterinary Medicine, Shandong Key Lab of Animal Disease Control and Breeding, Shandong Academy of Agricultural Sciences) ;
  • Rongsheng Zhu (Institute of Animal Science and Veterinary Medicine, Shandong Key Lab of Animal Disease Control and Breeding, Shandong Academy of Agricultural Sciences) ;
  • Ke Wang (Institute of Animal Science and Veterinary Medicine, Shandong Key Lab of Animal Disease Control and Breeding, Shandong Academy of Agricultural Sciences)
  • 투고 : 2023.08.23
  • 심사 : 2023.10.31
  • 발행 : 2024.06.01

초록

Objective: Jining Grey goat is a local Chinese goat breed that is well known for its high fertility and excellent meat quality but shows low meat production performance. Numerous studies have focused on revealing the genetic mechanism of its high fertility, but its highlighting meat quality and muscle growth mechanism still need to be studied. Methods: In this research, an integrative analysis of the genomics and transcriptomics of Jining Grey goats compared with Boer goats was performed to identify candidate genes and pathways related to the mechanisms of meat quality and muscle development. Results: Our results overlap among five genes (ABHD2, FN1, PGM2L1, PRKAG3, RAVER2) and detected a set of candidate genes associated with fatty acid metabolism (PRKAG3, HADHB, FASN, ACADM), amino acid metabolism (KMT2C, PLOD3, NSD2, SETDB1, STT3B, MAN1A2, BCKDHB, NAT8L, P4HA3) and muscle development (MSTN, PPARGC1A, ANKRD2). Several pathways have also been detected, such as the FoxO signaling pathway and Apelin signaling pathway that play roles in lipid metabolism, lysine degradation, N-glycan biosynthesis, valine, leucine and isoleucine degradation that involving with amino acid metabolism. Conclusion: The comparative genomic and transcriptomic analysis of Jining Grey goat and Boer goat revealed the mechanisms underlying the meat quality and meat productive performance of goats. These results provide valuable information for future breeding of goats.

키워드

과제정보

This research was funded by The Shandong Provincial Sheep and Goat Industry Technology System (SDAIT-10-02); Agricultural Variety Improvement Project of Shandong Province (2021LZGC010); Ministry of Finance and Ministry of Agriculture and Rural Affairs: China Agriculture Research System of Mutton Sheep (CARS-38); Natural Science Foundation of Shandong Province (ZR2022MC077), and Agricultural Scientific and Technological Innovation Project of Shandong Academy of Agricultural Sciences (CXGC2023A33).

참고문헌

  1. Zeder MA, Hesse B. The initial domestication of goats (Capra Hircus) in the zagros mountains 10,000 years ago. Science 2000;287:2254-7. https://doi.org/10.1126/science.287.5461.2254
  2. Wang K, Liu X, Qi T, et al. Whole-genome sequencing to identify candidate genes for litter size and to uncover the variant function in goats (Capra Hircus). Genomics 2021;113:142-50. https://doi.org/10.1016/j.ygeno.2020.11.024
  3. Wang X, Li G, Jiang Y, Tang J, Fan Y, Ren J. Genomic insights into the conservation and population genetics of two Chinese native goat breeds. J Anim Sci 2022;100:skac274. https://doi.org/10.1093/jas/skac274
  4. Wang JJ, Zhang T, Chen QM, et al. Genomic signatures of selection associated with litter size trait in Jining gray goat. Front Genet 2020;11:286. https://doi.org/10.3389/fgene.2020.00286
  5. Maltin C, Balcerzak D, Tilley R, Delday M. Determinants of meat quality: tenderness. Proc Nutr Soc 2003;62:337-47. https://doi.org/10.1079/pns2003248
  6. Schumacher M, DelCurto-Wyffels H, Thomson J, Boles J. Fat deposition and fat effects on meat quality-a review. Animals (Basel) 2022;12:1550. https://doi.org/10.3390/ani12121550
  7. Wang W, Sun B, Hu P, et al. Comparison of differential flavor metabolites in meat of Lubei White goat, jining gray goat and boer goat. Metabolites 2019;9:176. https://doi.org/10.3390/metabo9090176
  8. Zhang C, Zhang H, Liu M, Zhao X, Luo H. Effect of breed on the volatile compound precursors and odor profile attributes of lamb meat. Foods 2020;9:1178. https://doi.org/10.3390/foods9091178
  9. Dance LJE, Matthews KR, Doran O. Effect of breed on fatty acid composition and stearoyl-coa desaturase protein expression in the semimembranosus muscle and subcutaneous adipose tissue of cattle. Livest Sci 2009;125:291-7. https://doi.org/10.1016/j.livsci.2009.05.009
  10. Gruffat D, Bauchart D, Thomas A, Parafita E, Durand D. Fatty acid composition and oxidation in beef muscles as affected by ageing times and cooking methods. Food Chem 2021;343:128476. https://doi.org/10.1016/j.foodchem.2020.128476
  11. Zhao L, Li F, Zhang X, et al. Integrative analysis of transcriptomics and proteomics of longissimus thoracis of the hu sheep compared with the Dorper Sheep. Meat Sci 2022;193:108930. https://doi.org/10.1016/j.meatsci.2022.108930
  12. Wang K, Ma J, Zhang Y, Cui X, Tao H. Comparative analysis on meat quality between jining grey goats and boer goats. Shandong Agric Sci 2015;47:115-8. https://doi.org/10.14083/j.issn.1001-4942.2015.09.027
  13. Ma M, Cai B, Kong S, et al. PPARGC1A is a moderator of skeletal muscle development regulated by MiR-193b-3p. Int J Mol Sci 2022;23:9575. https://doi.org/10.3390/ijms23179575
  14. Wang FH, Zhang L, Li XK, et al. Progress in goat genome studies. Yi Chuan 2019;41:928-38. https://doi.org/10.16288/j.yczz.19-147
  15. Wei X, Zhu Y, Zhao X, et al. Transcriptome profiling of MRNAs in Muscle Tissue of Pinan Cattle and Nanyang Cattle. Gene 2022;825:146435. https://doi.org/10.1016/j.gene.2022.146435
  16. Xing K, Zhu F, Zhai L, et al. Integration of transcriptome and whole genomic resequencing data to identify key genes affecting swine fat deposition. PLoS One 2015;10:e0122396. https://doi.org/10.1371/journal.pone.0122396
  17. Kim JY, Jeong S, Kim KH, Lim WJ, Lee HY, Kim N. Discovery of genomic characteristics and selection signatures in Korean indigenous goats through comparison of 10 goat breeds. Front Genet 2019;10:699. https://doi.org/10.3389/fgene.2019.00699
  18. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for illumina sequence data. Bioinformatics 2014;30:2114-20. https://doi.org/10.1093/bioinformatics/btu170
  19. Li H, Durbin R. Fast and accurate short read alignment with burrows-wheeler transform. Bioinformatics 2009;25:1754-60. https://doi.org/10.1093/bioinformatics/btp324
  20. McKenna A, Hanna M, Banks E, et al. The genome analysis toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 2010;20:1297-303. https://doi.org/10.1101/gr.107524.110
  21. Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res 2010;38:e164. https://doi.org/10.1093/nar/gkq603
  22. Felsenstein J. PHYLIP - phylogeny inference package (version 3.2). Q Rev Biol 1989;64:164-6. https://doi.org/10.1111/j.10960031.1989.tb00562.x
  23. Patterson N, Price AL, Reich D. Population structure and eigenanalysis. PLoS Genet 2006;2:e190. https://doi.org/10.1371/journal.pgen.0020190
  24. Rubin CJ, Zody MC, Eriksson J, et al. Whole-genome resequencing reveals loci under selection during chicken domestication. Nature 2010;464:587-91. https://doi.org/10.1038/nature08832
  25. Weir BS, Hill WG. Estimating F-statistics. Annu Rev Genet 2002;36:721-50. https://doi.org/10.1146/annurev.genet.36.050802.093940
  26. Sabeti PC, Varilly P, Fry B, et al. Genome-wide detection and characterization of positive selection in human populations. Nature 2007;449:913-8. https://doi.org/10.1038/nature06250
  27. Bu D, Luo H, Huo P, et al. KOBAS-i: Intelligent prioritization and exploratory visualization of biological functions for gene enrichment analysis. Nucleic Acids Res 2021;49:W317-25. https://doi.org/10.1093/nar/gkab447
  28. Khanal P, Leite-Browning ML, Browning R. Influence of crossbreeding on meat goat doe fitness when comparing boer F1 with base breeds in the southeastern united states. J Anim Sci 2019;97:78-89. https://doi.org/10.1093/jas/sky421
  29. Naresh Kumar M, Thunuguntla VBSC, Veeramachaneni GK, Chandra Sekhar B, Swapna Guntupalli, Bondili JS. Molecular characterization of human ABHD2 as TAG lipase and ester hydrolase. Biosci Rep 2016;36:e00358. https://doi.org/10.1042/BSR20160033
  30. Wang X, Khan R, Raza SHA, et al. Molecular characterization of ABHD5 gene promoter in intramuscular preadipocytes of qinchuan cattle: roles of Evi1 and C/EBPα. Gene 2019;690:38-47. https://doi.org/10.1016/j.gene.2018.12.030
  31. Frezarim GB, Fonseca LFS, Salatta BM, et al. Genes and proteins associated with ribeye area and meat tenderness in a commercial nellore cattle population. Genome 2022;65:229-40. https://doi.org/10.1139/gen-2020-0163
  32. Yang G, Zhou H, Wang R, Hickford J. Variation in the ovine PRKAG3 gene. Gene 2015;567:251-4. https://doi.org/10.1016/j.gene.2015.05.021
  33. Bailey AJ, Paul RG, Knott L. Mechanisms of maturation and ageing of collagen. Mech Ageing Dev 1998;106:1-56. https://doi.org/10.1016/s0047-6374(98)00119-5
  34. Aikio M, Elamaa H, Vicente D, et al. Specific collagen XVIII isoforms promote adipose tissue accrual via mechanisms determining adipocyte number and affect fat deposition. Proc Natl Acad Sci USA 2014;111:E3043-52. https://doi.org/10.1073/pnas.1405879111
  35. Liu R, Wang H, Liu J, et al. Uncovering the embryonic development-related proteome and metabolome signatures in breast muscle and intramuscular fat of fast-and slow-growing chickens. BMC Genomics 2017;18:816. https://doi.org/10.1186/s12864-017-4150-3
  36. Na R, Ni W, E G, Zeng Y, Han Y, Huang Y. SNP screening of the MSTN gene and correlation analysis between genetic polymorphisms and growth traits in Dazu black goat. Anim Biotechnol 2021;32:558-65. https://doi.org/10.1080/10495398.2020.1727915
  37. Lehman JJ, Boudina S, Banke NH, et al. The transcriptional coactivator PGC-1alpha is essential for maximal and efficient cardiac mitochondrial fatty acid oxidation and lipid homeostasis. Am J Physiol Heart Circ Physiol 2008;295:H185-96. https://doi.org/10.1152/ajpheart.00081.2008
  38. Stamenkovic N, Jasnic J, Novkovic M, et al. Cloning and expression profiling of muscle regulator ankrd2 in domestic chicken gallus gallus. Histochem Cell Biol 2020;154:383-96. https://doi.org/10.1007/s00418-020-01899-1
  39. Cenni V, Kojic S, Capanni C, Faulkner G, Lattanzi G. Ankrd2 in mechanotransduction and oxidative stress response in skeletal muscle: new cues for the pathogenesis of muscular laminopathies. Oxid Med Cell Longev 2019;2019:7318796. https://doi.org/10.1155/2019/7318796