DOI QR코드

DOI QR Code

Prediction of Fire Curves Considering the Relationship between Mass Increase and Combustion Time of Combustibles

연소물의 질량증가와 연소시간의 상관관계를 고려한 화재곡선 예측

  • 남은준 (고려대학교 미래건설환경융합연구소) ;
  • 이태일 (고려대학교 건축사회환경공학부) ;
  • 지광습 (고려대학교 건축사회환경공학부)
  • Received : 2023.12.18
  • Accepted : 2024.03.06
  • Published : 2024.04.30

Abstract

In this paper, we aimed to convert the fire curve in volume units to a fire curve per unit area for application in the Fire Dynamic Simulator (FDS) surface heat release rate method. The fire curve was expressed dimensionlessly considering the total combustion characteristic time, and improvements were made to represent the appropriate ratios for the growth , steady, and decay phases concerning the fire intensity. Additionally, a correction function for combustion characteristic time varying with mass increase was derived. Also to control the growth time values according to the increase in mass, a function to correct the growth phase ratio was derived. Consequently, utilizing existing data, a formula was established to determine the reference mass for combustion materials and predict the fire curve based on mass increase.

본 논문에서는 부피단위의 화재곡선을 단위면적당 화재곡선으로 구하여 화재곡선 식을 FDS 표면열방출율법에 대입할 수 있도록 하고자 하였다. 화재곡선을 총 연소특성시간을 고려하여 무차원으로 표현하였으며, 성장구간비 𝛽i, 유지구간비 𝛽s , 감쇄구간비 𝛽d를 고려하여 화재강도에 대한 적절한 비율을 나타내도록 개선하였다. 또한, 질량증가에 따라 변화하는 연소 특성시간 보정함수 𝛾(m/m0)를 도출하였으며, 질량비가 증가함에 따라 성장시간 값을 제어하기 위해 성장구간비 𝛽i를 보정하는 함수 αi(m/m0)를 도출하였다. 이에 따라 기존 데이터를 활용하여 연소물의 기준질량을 선정하고, 질량 증가에 따른 화재곡선을 예측할 수 있는 식을 확립하였다.

Keywords

Acknowledgement

본 연구는 도로교통공사 연구용역사업(과제번호: 제202303110호) 의 연구비 지원으로 수행되었으며, 이에 감사드립니다.

References

  1. Baik, H. S., Park, C., and Shim, J. W. (2016), Need for confrontational strategy of bridge fire protection with domestic and foreign cases, Jouran of the Korean Society of Civil Engineers, 64, 10-12 (in Korean, with English abstract).
  2. Hong, S. Y., Jeong, S. Y., Baek, S. K., and Choi, Y. H. (2011), The Social Cost of a Fire Under Bucheon Viaduct on Seoul Ring Expressway, Transportation Technology and Policy, 8(1), 83-87 (in Korean).
  3. Hurley, M. J., Gottuk, D. T., Hall Jr, J. R., Harada, K., Kuligowski, E. D., Puchovsky, M., and WIECZOREK, C. J. (Eds.). (2015), SFPE handbook of fire protection engineering, Springer.
  4. Kodur, V. K. R., and Phan, L. (2007), Critical factors governing the fire performance of high strength concrete systems, Fire Safety Journal, 42(6-7), 482-488.
  5. Kodur, V., Gu, L., and Garlock, M. E. M. (2010), Review and assessment of fire hazard in bridges, Journal of the Transportation Research Board, 2172(1), 2-29.
  6. Kim, H. J., and Lilley, D. G. (2002), Heat release rates of burning items in fires, Journal of Propulsion and Power, 18(4), 866-870.
  7. Ministry of Land, Transport and Maritime Affairs. (2012), Vehicle Fire Curve in the Road Design Manual. Ministry of Land, Transport and Maritime Affairs, Vol. 11-1611000-002274-01, (707)15. (in Korean).
  8. Najjar, S. R., and Burgess I. W. (1996), A nonlinear analysis for three-dimensional steel frames in fire conditions, Journal of Engineering Structures, 8(1), 77-89.
  9. Shim, J., Jang, T., Lee, J., Kim, N., Gil, H., and Lim, G. (2016), Development of Fire Safety Management Method for Stock-piles under Bridge, Vol. 2016-56-534.9607, 166-173 (in Korean).
  10. Shim, J., and Jang, T. (2016), 1P-104: Study on the Combustion Characteristics of Plastic Debris in the Underdeck Space of Bridges, Proceedings of The Korean Society of Industrial and Engineering Chemistry, 2016(1), 157-157 (in Korean).
  11. Shim, J., Yoo, B., Cho, J., and Kim, N. (2010), Applicability Analysis of FDS Code Using Heptane and Mock-up Fire Test, Proceedings of the Korea Concrete Institute Academic Conference, 345-346 (in Korean, with English abstract).
  12. Zi, G., Lee, S., Shin, Y., Shim, J., and Kim, J. (2011), Investigation of the Fire Source in the Warehouse under Bridge using FDS Code, Journal of the Korea Association for Computational Structural Engineering, 24(6), 663 (in Korean, with English abstract).