DOI QR코드

DOI QR Code

Analysis of Dynamic Response Characteristics for KTX and EMU High-Speed Trains on PSC-Box Railway Bridges

PSC-box 철도교량의 KTX 및 EMU 고속열차에 대한 동적 응답 특성 분석

  • 한만석 (인하대학교 산업과학기술연구소) ;
  • 송민규 (디엘이앤씨(주) 토목스마트엔지니어링팀) ;
  • 신수봉 (인하대학교 사회인프라공학과) ;
  • 이종한 (인하대학교 사회인프라공학과)
  • Received : 2024.03.13
  • Accepted : 2024.03.26
  • Published : 2024.04.30

Abstract

The majority of high-speed railway bridges along the domestic Gyeongbu and Honam lines feature a PSC-box type structure with a span length ranging from 35 to 40m, which typically exhibits a first bending natural frequency of approximately 4 to 5Hz. When KTX high-speed trains transverse these bridges at speeds ranging from 290 to 310km/h, the vibration induced by the trains approaches the first bending natural frequency of the bridge. Furthermore, with the upcoming operation of a EMU-320 high-speed train and the anticipated increase in the speeds of these high-speed trains, there is a need to analyze the dynamic response of high-speed railway bridges. For this, based on measured responses from actual railway bridges, a numerical model was constructed using a numerical model updating technique. The dynamic response of the updated numerical model exhibited a strong agreement with the measured response from the actual railway bridges. Subsequently, this updated model was utilized to analyze the dynamic response characteristics of the bridges when KTX and EMU-320 trains operate at increased speeds. The maximum vertical displacement and acceleration at the mid-span of the bridges were also compared to those specified in the railway design standard with the increasing speed of KTX and EMU-320.

국내 경부선 및 호남선의 고속철도교량은 대부분 PSC-box 형식으로 설계되어 있고, 경간장35~40m인 경우 약 4~5Hz 정도의 1차 휨 고유진동수를 가지고 있다. 이때 KTX 고속열차가 290~310 km/h 속도로 주행할 경우, 열차에 의한 가진 진동수가 교량의 1차 휨 고유진동수에 근접하면서 공진 유사 현상이 발생하게 된다. KTX와 함께 향후 운행예정인 EMU-320 고속열차의 증속에 대해서도 철도교량의 동적 응답을 통한 안전성 분석이 필요한 상황이다. 본 연구에서는 실제 철도교량에서 계측된 응답을 기반으로 구조해석모델 개선 기법을 통해 대상 철도교량과 거동이 유사한 해석모델을 구현하였다. 개선된 구조해석모델은 고속철도교량에 KTX가 주행할 때 계측된 응답과 비교하여 검증하고, 이를 통해 KTX와 EMU-320 고속열차가 증속할 경우 동적 응답 특성을 분석하였다. 또한, 결과적으로, 교량 중앙부의 최대 수직변위와 가속도의 변화는 철도설계기준과 비교하여 주행 안전성을 평가하였다.

Keywords

Acknowledgement

본 연구는 국가철도공단 위탁과제(제 2021-2-388-202303-00호)의 연구비지원에 의해 수행되었습니다.

References

  1. Gou, H., Zhao, T., Qin, S., Zheng, X., Pipinato, A., and Bao, Y. (2022), In-situ testing and model updating of a long-span cable-stayed railway bridge with hybrid girders subjected to a running train, Engineering Structures, 253.
  2. Holland, J. H. (1975), Adaptation in Natural and Artificial Systems, University of Michigan Press, Michigan.
  3. Jeong, Y. D., Koh, H. I., Kang, Y. S., Eom, G. H., and Yi, S. T. (2019), Analytical Research on Dynamic Behavior of Steel Composite Lower Railway Bridge, Journal of the Korea Institute for Structural Maintenance and Inspection, KSMI, 23(1), 27-35 (in Korean, with English abstract).
  4. Jeong, S., Kim, H., Kim, S. I., Jang, J. H., and Lee, K. C. (2021), Field Measurement of Dynamic Properties of Honam High-Speed Railway Bridges, Journal of the Korean Society for Railway, 24(5), 386-394 (in Korean, with English abstract).
  5. Jeong, S., Kim, H., Kim, S. I., and Lee, K. C. (2022), Dynamic amplification assessment of high-speed railway bridge under resonance condition using multi-sensor fusion, International Journal of Rail Transportation, 10(4), 456-475.
  6. Kim, J. C. (2016), Development of a mutation operator of a real-coded genetic algorithm for model updating of existing bridge, Ph.D dissertation, Incheon, South Korea: Inha University, Department of Civil Engineering.
  7. Kim, S. I., Kim, H., and Park, D. (2013), Field Tests and Resonance Behavior Corresponding to the Damping Ratio of a High Speed Railroad Bridge, Journal of the Korean Society for Railway, 16(4), 305-310 (in Korean, with English abstract).
  8. Ministry of Land, Infrastructure and Transport, Korea (2018), Bridge Design-General Design Method (KDS 24 10 10: 2018).
  9. Nam, D. W., Choi, H. K., Kim, K. N., and Jung, K. S. (2008), Resonance Characteristics of a Arch Bridge for High-Speed Railways, Korean Society of Steel Construction, 20(4), 455-467 (in Korean, with English abstract).
  10. Oh, J. (2008), Dynamic Behavior and Resonance Reduction of Two-Span Continuous Bridges for Korean Train eXpress, Journal of the Korean Society of Civil Engineers, 28(1A), 95-104 (in Korean, with English abstract).
  11. Oh, S. T., and Yi, S. T. (2023), Dynamic Behavior Analysis of PSC Train Bridge Friction Bearings for Considering Next-generation High-speed Train, Journal of the Korea Institute for Structural Maintenance and Inspection, KSMI, 27(6), 39-46 (in Korean, with English abstract).
  12. Sabamehr, A., Lim, C., and Bagchi, A. (2018), System identification and model updating of highway bridges using ambient vibration tests, Journal of Civil Structural Health Monitoring, 8(5), 755-771.
  13. Wu, J., Cheng, F., Zou, C., Zhang, R., Li, C., Huang, S., and Zhou, Y. (2022), Swarm Intelligent Optimization Conjunction with Kriging Model for Bridge Structure Finite Element Model Updating, Buildings, 12(5), 504.
  14. Xu, G., and Azhari, F. (2021), Predicting the Remaining Useful Life of Corroding Bridge Girders Using Bayesian Updating, Journal of Performance of Constructed Facilities, 35(5), 04021055.
  15. YiFei, L., Minh, H. le, Khatir, S., Sang-To, T., Cuong-Le, T., MaoSen, C., and Abdel Wahab, M. (2023), Structure damage identification in dams using sparse polynomial chaos expansion combined with hybrid K-means clustering optimizer and genetic algorithm, Engineering Structures, 283.
  16. Yin, T., and Asce, A. M. (2022), A Practical Bayesian Framework for Structural Model Updating and Prediction, ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering, 8(1), 04021073.
  17. Yoon, S. G., and Shin, S. (2019), Evaluation of Bridge Load Carrying Capacity of PSC Girder Bridge using Pseudo-Static Load Test, Journal of the Korea Institute for Structural Maintenance and Inspection, KSMI, 23(4), 53-60 (in Korean, with English abstract).
  18. Abaqus (2023), Abaqus cae. Ver. 2023. Velizy-Villacoublay, Dassault Systemes.