DOI QR코드

DOI QR Code

A Experimental and Analytical Study on One directional Bond Behavior of Grid typed CFRP Reinforcement

격자형 탄소 보강재의 일방향 부착특성에 대한 실험 및 해석적 연구

  • 노치훈 (경상국립대학교 건설시스템공학과 ) ;
  • 장낙섭 (경상국립대학교 건설시스템공학과 ) ;
  • 오홍섭 (경상국립대학교 건설시스템공학과 )
  • Received : 2024.03.04
  • Accepted : 2024.04.09
  • Published : 2024.04.30

Abstract

In this study, authors attempted to determine the bond behavior characteristics to utilize Grid typed CFRP reinforcement as an alternative to steel rebar used as concrete reinforcement. Since it is difficult to understand the influence of the transverse grid length of the Grid typed CFRP reinforcement in the existing numerical analysis proposal for bond behavior, a nonlinear 3D model was created and finite element analysis was performed. To perform the analysis, the analysis was conducted by inputting a nonlinear material model and modeling the bond interface characteristics between the Grid typed CFRP reinforcement and concrete and comparing them with the actual direct pull-out test results. The bond behavior characteristics of the Grid typed CFRP reinforcement were found to be very dominated by the factors of the transverse grid, and showed a tendency to continuously increase load.

본 연구에서는 콘크리트 보강재로 사용되는 철근의 대체제로써, 격자형 탄소보강재를 활용하기 위해 부착거동 특성을 파악하고자 하였다. 기존의 부착거동에 관한 수치해석 제안식에서는 격자형 탄소보강재의 횡방향 격자의 영향을 이해하기 어려운 실정으로, 비선형 3D모델을 제작하여 유한요소해석을 진행하였다. 해석 수행을 위하여 비선형 재료 모델의 입력과 격자형 탄소보강재와 콘크리트 사이의 부착계면 특성을 모델링하여 실제 직접인발시험 결과와 비교를 통하여 분석을 진행하였다. 격자형 탄소보강재의 부착거동 특성은 횡방향 격자의 요인에 매우 지배적인 것으로 나타났으며, 지속적인 하중 증가 경향을 보였다.

Keywords

Acknowledgement

본 연구는 교통과학기술진흥원의 탄소 고분자 부식ZERO 철근대체재 기술개발 연구사업(21CFRP-C163399-01)의 지원에 수행되었습니다.

References

  1. American Concrete Institute. (2012), Guide for Test Methods for Fiber Reinforced Polymers (FRP) for Reinforcing and Strengthening Concrete Structures (ACI 440.3 R-12). Farmington Hills, Michigan: American Concrete Institute.
  2. American Concrete Institute. (2015), Guide for the design and construction of structural concrete reinforced with fiber-reinforced polymer (FRP) bars.(ACI 440.1 R-15). Farmington Hills, Michigan: American Concrete Institute.
  3. ASTM American Society of Testing Materials. D3916-16 (2016), Standard Test Method for Tensile Properties of Pultruded Glass-Fiber-Reinforced Plastic Rod. ASTM International, West Conshohocken, PA.
  4. ASTM American Society of Testing Materials. D7205/D7205M-06 (2016), Standard Test Method for Tensile Properties of Fiber Reinforced Polymer Matrix Composite Bars. ASTM International, West Conshohocken, PA.
  5. ASTM American Society of Testing Materials. D7913/ D7913M-14. (2014), Standard Test Method for Bond Strength of Fiber-Reinforced Polymer Matrix Composite Bars to Concrete by Pullout Testing", ASTM International, West Conshohocken, PA.
  6. Burdzinski, M., and Niedostatkiewicz, M. (2022), Experimental -Numerical Analysis of the Effect of Bar Diameter on Bond in Pull-Out Test, Buildings, 12(9), 1392.
  7. Cheon, J. H., Kim, K. M., and Shin, H. M. (2021), Analytical Approach to Evaluate the Nonlinear Beahviors of One-way Concrete Slab Reinforced with CFRP Grid Reinforcements, Journal of the Korea Institute for Structural Maintenance and Inspection, 25(6), 218-225 (in Korean).
  8. Dassault, S. (2014), ABAQUS 6.14 analysis User's Manual. Dassault Systems: Providence, RI, USA.
  9. Hafezolghorani, M., Hejazi, F., Vaghei, R., Jaafar, M. S. B., and Karimzade, K. (2017), Simplified damage plasticity model for concrete, Structural Engineering International, 27(1), 68-78.
  10. Keuser, M., Kepp, B., Mehlhorn, G., and Rostasy, F. (1983), Nonlinear static analysis of end-fittings for GFRP-prestressing rods, Computers & Structures, 17(5-6), 719-730.
  11. Khalfallah, S. (2008), Modeling of bond for pull-out tests, Building Research Journal, 56, 37-48.
  12. Kim, K. M., and Cheon, J. H. (2022), Flexural Behavior of One-Way Slab Reinforced with Grid-Type Carbon Fiber Reinforced Plastics of Various Geometric and Physical Properties, Applied Sciences, 12(23), 12491.
  13. Kmiecik, P. A., and Kaminski, M. (2011), Modelling of reinforced concrete structures and composite structures with concrete strength degradation taken into consideration, Archives of Civil and Mechanical Engineering, 11(3), 623-636.
  14. Li, X. (2007), Finite element modeling of skewed reinforced concrete bridges and the bond-slip relationship between concrete and reinforcement (Doctoral dissertation).
  15. Min, K.-J, Kim, K.-M, Song, B.-K., and Park, S.-W. (2023), Flexural Behavior of Slabs Reinforced with Grid-Type CFRP Reinforcement Manufactured Using Adhesion, Journal of the Korea Concrete Institute, 35(2), 197-206 (in Korean).
  16. Noh, C. H., Jang, N.-S., and Oh, H. (2022), An Experimental Study on Concrete Bond Behavior According to Grid Spacing of CFRP Grid Reinforcement, Journal of the Korea Institute for Structural Maintenance and Inspection, 26(6), 73-81 (in Korean).
  17. Vilanova, I., Torres, L., Baena, M., & Llorens, M. (2016), Numerical simulation of bond-slip interface and tension stiffening in GFRP RC tensile elements, Composite Structures, 153, 504-513.