
IJCSNS Internat൴onal Journal of Computer Sc൴ence and Network Secur൴ty, VOL.24 No.4, Apr൴l 2024

77

Manuscr൴pt rece൴ved Apr൴l 5, 2024
Manuscr൴pt rev൴sed Apr൴l 20, 2024

https://do൴.org/10.22937/IJCSNS.2024.24.4.9

Oğuzhan ARSLAN1† and İsmail KIRBAS2†
oguzhan_arslan@outlook.com ismailkirbas@mehmetakif.edu.tr

†Mehmet Akif Ersoy University, Institute of Science and Technology, Computer Engineering, Burdur, Turkey

Abstract
Using random numbers to represent uncertainty and
unpredictability is essential in many industries. This is crucial in
disciplines like computer science, cryptography, and statistics
where the use of randomness helps to guarantee the security and
dependability of systems and procedures. In computer science,
random number generation is used to generate passwords, keys,
and other security tokens as well as to add randomness to
algorithms and simulations. According to recent research, the
hardware random number generators used in billions of Internet of
Things devices do not produce enough entropy. This article
describes how raw data gathered by IoT system sensors can be
used to generate random numbers for cryptography systems and
also examines the results of these random numbers. The results
obtained have been validated by successfully passing the FIPS
140-1 and NIST 800-22 test suites.
Keywords:
Internet of Things, Cryptography, Random Number Generators,
Webcam Sensor, Light Sensor.

1. Introduction

The term "Internet of Things," or IoT in short, is derived
from the phrases "object" and "internet" and is one of the
subjects that has been the subject of numerous studies in
recent years. There are billions of users worldwide who use
the global system of connected computer networks known
as the Internet. By facilitating the transmission of
information between individuals, this global system has
become a crucial component of our daily lives. The Internet
of Things is the most used terminology, although it has
terminological counterparts such as Internet of Everything
(IoE), Web of Things (WoT), Web of Everything (WoE),
and Machine to Machine (M2M) [1]. The idea of the
Internet of Things (IoT) has come to mean a network of
interconnected devices that can interact with one another by
connecting to the internet without the help of a third
party.IoT devices can access cloud-based resources to
collect data and extract the collected data, make
authorisation arrangements, and make decisions by
analysing the collected data with the help of algorithms [2].
Random number generation is critical in many fields
because it is used to simulate uncertainty and
unpredictability. This is important in fields such as
computer science, cryptography, and statistics, where

randomness is used to ensure the security and reliability of
systems and processes. In computer science, random
number generation is used to create randomness in
algorithms and simulations, as well as to generate
passwords, keys, and other types of security tokens. In
cryptography, random numbers are used to generate secure
keys for encrypting and decrypting data, as well as to create
random challenges in authentication protocols. In statistics,
random number generation is used to sample data and to
perform statistical tests. Overall, random number
generation is a critical component of many systems and
processes that rely on uncertainty and unpredictability to
function correctly and securely. The raw data needed by
random number generators in cryptographic systems can be
obtained using the information gathered. This article will
describe how these raw data can be utilised to create fixed-
length keys that can be incorporated into algorithms that
will protect the security of vital communication systems.

Secure communication system architecture, encryption

methods, and random number generators (RNG) are the
foundations of cryptography. Private keys and secret keys
are generated using the distinctive random numbers
produced by the RNG. RNGs are divided into two groups:
real and pseudo. Because they are simpler to operate,
pseudo random number generators are selected more often.
Because the quick generation of random numbers without
the need for any hardware is a significant cost benefit. On
the other hand, true random number generators, which are
crucial for secure communication systems, incorporate non-
deterministic numbers as a noise source. Expensive gear is
needed to capture the genuine unpredictability of the
environment. The random numbers that will be produced
must exhibit high statistics, be unpredictable, have a
consistent structure, and use hardware rather than pseudo
RSUs in terms of confidentiality. Some mathematical
conditions (randomness tests) must be satisfied if the
produced numbers are used in sensitive contexts, such as
cryptography systems. The general encryption structure of
a text message between a sender and a recipient is depicted
in Figure 1.

Ut൴l൴sat൴on of IoT Systems as Entropy Source for Random Number
Generat൴on

IJCSNS Internat൴onal Journal of Computer Sc൴ence and Network Secur൴ty, VOL.24 No.4, Apr൴l 2024

78

Figure 1. General structure of encryption.

As seen in Figure 1, a text that the sender requests be
encrypted is fed into the encryption process with the aid of
the key. In this paper, we will talk about how to make the
secure key that encryption techniques need.

Previous studies used either internal or external
methods to obtain the seed values for random number
generators. Post-processing algorithms use input variables
like the system clock, mouse movements, CPU data, image
or sound data, random functions in programming languages,
etc. as seeds. After some time, the numbers generated in this
manner begin to repeat and exhibit predictable behaviour.
In this project, the values obtained from the Tesla sphere [3],
which was used by Nicola Tesla in 1891 to transmit
electricity wirelessly as a noise source, will be converted
into digital data. After being subjected to a post-processing
algorithm with a minicomputer (raspberry pi), fixed-length,
unique, unpredictable, and chaos-based number sequences
will be obtained. The chaotic environment needed for
random number generation is created by gathering
information from electrical radiations that are randomly
distributed across the sphere, from its centre outward. The
input source's chaotic character will guarantee the
development of irregular, independent sequences. It is
predicted that it will close the knowledge gap in this area
and help with the issue of acquiring the seed value of the
random number generators used today.

2. Method

To make the secret information between two or more
communicating points unintelligible, cryptology, which is a
cypher science, encrypts it using a variety of techniques.
The secret information is subsequently decrypted on the
receiving side. It is a collection of approaches and
applications built on high level mathematical ideas [4]. As
indicated in Figure 2, the two branches of cryptology are
cryptography and cryptanalysis.

Figure 2. Cryptology.

The phrases "secret" and "writing," which refer to secret
writing, are the roots of the word "cryptography." A sender
runs the risk of having his communication intercepted and
changed when using open networks to convey it to a
recipient. Plain text is the message that is in danger here.
Encryption is the process of masking a message's content.
The plaintext is transformed through this procedure into an
encrypted format that is incomprehensible to others. This
data could be either encrypted data for storage or a message
that is encrypted for transmission. Decryption is the
procedure through which the receiving party transforms the
cypher text back into plain text [5]. The process of looking
for the ciphertext's solution is known as cryptanalysis.
Finding potential flaws in cryptographic systems and
information breaches is the fundamental goal of
cryptanalysis, which is based on exceedingly complex
mathematical calculations.

2.1 Encryption Algorithms

Encryption is the process of masking a message's
content. The plaintext is transformed through this procedure
into an encrypted format that is incomprehensible to others.
This data could be either encrypted data for storage or a
message that is encrypted for transmission. Decryption is
the procedure through which the receiving party transforms
the cypher text back into plain text.

In symmetric encryption methods, the encryption
algorithm subjects the encrypted message to several
procedures before it can be transferred. Figure 3 illustrates
how the sender encrypts the message using the encryption
key throughout these procedures. Symmetric key
encryption techniques use the same keys for encryption and
decryption [6]. AES (Advanced Encryption Standard), DES
(Data Encryption Standard), and 3DES are popular
symmetric encryption techniques today (Triple DES).

Figure 3. Symmetric encryption and decryption.

Public key encryption is another name for asymmetric

encryption methods. For encryption and decryption, there is
a public key and a private key. Asymmetric encryption
techniques boost the computer's processing capability by
using very big prime numbers [5]. Asymmetric
cryptography uses public key infrastructure because long
keys and lengthy computations are required [7]. The

IJCSNS Internat൴onal Journal of Computer Sc൴ence and Network Secur൴ty, VOL.24 No.4, Apr൴l 2024

79

fundamental framework of asymmetric cryptography is
depicted in Figure 4.

Figure 4. Asymmetric encryption and decryption.

 The most popular symmetric encryption technique in

use right now is called the Advanced Encryption Standard.
AES is a highly effective symmetric key block cipher in
terms of both security and performance. The key sizes that
can be used for encryption and decryption are 128, 192, and
256 bits [8]. Some of the main characteristics of an
encryption algorithm are the following: Confidentiality,
integrity, irrefutability, accessibility and identity control [9].

2.2 Random Number Generators

Wherever unpredictability is required, such as in
computer games, games of chance, and encryption, random
number generators can be utilized. Figure 5 illustrates the
division of random number generation into "real" and
"pseudo" categories. Pseudo RNGs use algorithms to
generate their output, therefore after a while the output data
starts to repeat itself on a regular basis. The output data is
anticipated to be non-periodic since the source of
randomness in a true RNG is based on a chaotic source of
uncertainty [10].

Figure 5. Random number generators.

Systems that produce random numbers deterministically

are known as pseudo RNGs. They have benefits over actual
random number generators, including ease of creation and
an inexpensive cost. By examining its value at any time
when the algorithm is compromised, the subsequent outputs
can be anticipated [11]. In secure communication systems
that demand confidentiality, this prediction may result in
significant security issues [12]. True RNGs are systems that
employ the chaotic randomness of nature to produce

numbers by post-processing with an algorithm. For instance,
statistical data gathered by remote monitoring of a plant in
an agricultural field or random raw data that cannot be
predicted with data obtained from the measurement sensor
attached to an animal's foot can be obtained. The numbers
exhibiting poor statistical features are post-processed to
demonstrate greater statistics after the sampling procedure
[13].

Testing for randomness ensures that the post-processed
datasets from the entropy source are accurate and realistic.
Bit sequences obtained using various sensing sources
(camera and light sensor) and methodologies (mode method,
last bit extraction, and hash algorithms) will be examined in
this research paper's monobit and poker test findings. The
ratio of ones to zeros in a sequence is compared in the
monobit test. If there are more than 9725 ones in a sequence
of 20000 bits, the test is successful. If there are fewer than
9725, the test is unsuccessful [14].

Post processing algorithms will be employed to refine
the raw data and boost unpredictability [15]. One of the
most popular post-processing techniques, the XOR
algorithm, can be characterized as two-bit inputs producing
a one bit output. The hash algorithms utilized in this paper
are Sha256 and Md5.

3. Experimental Study

The values obtained by using sensors such as
temperature, pressure, light, gas, humidity and pH [16], [3],
[17] can be used as seed values for random number
generators. Ansari et al. created a real random number
generator using ldr and sound sensors connected to an
Arduino microcomputer [18]. Tuncer and Genç proposed a
random number generator based on the GPS sensor in
mobile phones and human movement [19]. Yaşar et al. used
the random function of the C programming language and
the sha256 summarisation algorithm to generate random
integers [20]. In his research, Chen obtained random
numbers with video and audio noise with a camera [21].
Etem and Kaya created the random number generator for
their research without the need for any hardware, using the
LCG (Linear Congruential Generator) algorithm with
Trivium as the postprocessor [22]. Özkaynak et al.,
proposed an algorithm that generates random numbers with
the pixel values of the photographs obtained from the
mobile device camera [23]. By raising the electrical voltage,
Nikola Tesla, who was born in 1856 in the Serbian village
of Similjan, made it possible to transmit electrical power
wirelessly with a low output current density [24]. Raw data
from the Tesla sphere in the physical environment will be
collected as a noise source using IoT devices or sensors. The
obtained values will then be converted into digital data
using a Raspberry Pi device, and if necessary, they will be

IJCSNS Internat൴onal Journal of Computer Sc൴ence and Network Secur൴ty, VOL.24 No.4, Apr൴l 2024

80

subjected to post processing algorithms to produce fixed
length number sequences.

3.1. RGB Colour Sensor

In this section, the raw data from the Tesla sphere
utilized as an entropy source that was collected by the
TCS34725 colour sensor connected to the Raspberry Pi will
be analysed. This sensor additionally measures colour
temperature and colour irradiance in addition to colour
values. By combining the primary colours of red, green, and
blue, colour sensors try to get colour values between 0 and
255. These sensors compare the light from the sensor
striking the substance with the light values received by
reflecting off the material to arrive at the result. Male-
female intermediate cables are used to link the GND, SCL,
SDA, and 3V3 pins on the colour sensor to the
corresponding pins on the Raspberry Pi device on the
breadboard. Figure 6 depicts the overall appearance of the
experimental set created with the RGB sensor.

Figure 6. General view of the RGB sensor system.

The following list of components makes up the system,
whose schematic representation is shown in Figure 7:
Raspberry Pi 4, TCS34725 RGB Colour Sensor, Tesla
Sphere, Monitor, Keyboard and mouse.

Figure 7. Shape of RGB sensor experiment setup.

A small sphere in the Tesla sphere's centre randomly
emits electrical radiations of various colours in the direction
of the glass sphere outside. To extract three red, green, and
blue values between 0 and 255 from the colour sensor, a
Python coding procedure was used. Raw data were gathered
from the Tesla sphere in the real world using a colour sensor
as a noise source, and the values obtained were then
transformed using a Raspberry Pi device into the numerical
colour values in Table 3.

Table 3. RGB sensor raw data.

NU.
COLOUR

HEXADECİMAL CODE
R-G-B VALUES

1 FFFFFF (255,255,255)
2 2D2D2D (45,45,45)
3 FFFFFF (255,255,255)
4 FFFFFF (255,255,255)
5 5C5C5C (92,92,92)
6 5C1010 (92,16,16)
7 5C1010 (92,16,16)
8 5C1010 (92,16,16)

Raw data including RGB values of (45,45,45), colour

temperature of 1391.0K, and colour light intensity of 17.566
lux were evaluated. The raw data collected at any given time
was noted to be high-quality numbers, but as time went on,
the data produced correlated outcomes and the same values
overlapped. The (92,16,16) values acquired from the colour
sensor were thought to be unsuitable for use as random
number generator seeds because they overlap, are not
changeable, and have a relationship to one another. As a
result, the RGB sensor test results are not listed under the
heading "Analysis Results."

3.2. WEBCAM Sensor

In this section, the raw data from the Tesla sphere
utilized as an entropy source that was collected by the
webcam sensor attached to the Raspberry Pi computer will
be analysed. The movements of the electrical radiations in
the Tesla sphere were detected using the webcam attached
to the Raspberry Pi through a USB port, and raw data with
x and y coordinate values were collected. Figure 8 depicts
the overall perspective of the experimental setup created
using a webcam.

IJCSNS Internat൴onal Journal of Computer Sc൴ence and Network Secur൴ty, VOL.24 No.4, Apr൴l 2024

81

Figure 8. General view of the webcam sensor system.

The following list of components makes up the system,
whose schematic representation is shown in Figure 9:
Raspberry Pi 4, Webcam, Tesla Globe, Monitor, Keyboard
and mouse.

Figure 9. Shape of webcam sensor experiment setup.

The sphere's radiations are identified using OpenCV, a

Python computer language package, and the raw data
collected from the moving area's x and y coordinates is then
examined. Intel introduced OpenCV, an open-source visual
library, in 1999. On the Raspberry Pi computer, the
necessary installation processes for the OpenCV library,
which is utilized in both academic work and commercial
applications, were carried out. Following the library's
installation, a program in the Python programming
language was created that locates moving areas, grids them
in, and outputs the weight point's x and y coordinates, as
shown in Table 4.

Table 4. Webcam raw data.
Nu. X Coordinate Y Coordinate Elapsed Time (sec)

1 324 305 0.10
2 282 302 0.091
3 197 121 0.078
4 193 82 0.088

5 212 108 0.082
6 260 329 0.078
7 364 133 0.067
8 354 151 0.096

The information gathered in the table above serves as

the random number generator's seed values. These variables
were used to generate outputs of fixed length using 4
distinct techniques. The first approach entails translating the
remainder (Mod 16) into the hexadecimal number system
after dividing the x and y coordinate values by 16,
respectively. In Table 4, the remainders that were produced
after applying the Mod 16 method to the numbers in the
second row (282 and 302) correspond to the hexadecimal
values "10" and "e," respectively. According to the residual
values obtained using this method, the x and y coordinates
produced when the webcam sensor detects movement
provide an eight-bit output (1010, 1110). Until the specified
fixed key length is reached, the motion detection cycle is
repeated. The second method involves converting the
coordinate values to a binary number system and taking the
last bit.

The third-row values (197 and 121) in Table 4 have last

bit values of "1" for both coordinate data (after conversion
to binary by the last bit method). According to the final bit
values discovered using this method, the x and y
coordinates formed when the webcam sensor detects
movement generate a two-bit long output. Until the
specified fixed key length is reached, the motion detection
cycle is repeated. The coordinate values are entered into the
Md5 and Sha256 hash algorithms to complete the third and
fourth methods. After using XOR post processing, the
output is obtained by independently summing the x and y
coordinate values. These techniques produced 1024-bit
outputs, which were then submitted to a monobit
randomness test to ensure their randomness. The section
under "Analysis Results" will assess the test results.

3.3. Light Sensor

This part will analyse the unprocessed data collected by

the LDR sensor attached to the Raspberry Pi from the Tesla
sphere used as an entropy source. Utilized by the Raspberry
Pi device, the LDR is a sensor that gauges light intensity in
proportion to the amount of light that strikes it. The amount
of light hitting the LDR will determine how much energy
the capacitor receives. The time until logic 1 will provide
the light intensity since the Raspberry Pi will identify the
capacitor charging as logic 1 when it happens. Male-female
intermediate wires on the breadboard are used to link the
light sensor and capacitor to the Raspberry Pi device's GND,
GPIO3, and 3V3 pins. The light values displayed in Table
5 were collected from the Tesla sphere, which serves as the

IJCSNS Internat൴onal Journal of Computer Sc൴ence and Network Secur൴ty, VOL.24 No.4, Apr൴l 2024

82

noise source. Figure 10 shows how the experiment set made
with the LDR sensor looks as a whole. 

Figure 10. General view of the LDR sensor system.

The following list of components makes up the system,

whose schematic representation is shown in Figure 11:
Raspberry Pi 4, LDR Sensor, Tesla Globe, Monitor,
Keyboard and mouse.

Figure 11. Shape of LDR sensor experiment setup.

Table 5. LDR sensor raw data.

Nu. Measured Light Intensity Elapsed Time (sec)
1 1090 0.1021
2 1067 0.1019
3 1098 0.1017
4 1094 0.1019
5 638 0.1023
6 654 0.1023
7 1102 0.1020
8 1061 0.1021

The data obtained in Table 5 serves as the random

number generator's seed values. Using these data, four
distinct strategies, as described in Section 4.2, were used to
produce outputs of fixed length. The first technique is the

remainder (Mod 16), which is achieved by dividing the light
values by 16. The second approach involves converting the
light values to binary and obtaining the final bit. The third
and fourth methods are obtained by using the Md5 and
Sha256 hash algorithms, respectively. These techniques led
to the creation of 1024 bit outputs, similar to those used in
the webcam sensor section, which were then subjected to a
monobit randomness test in order to verify the
unpredictability. The section under "Analysis Results" will
assess the test results.

3.4. Comparison of Analysis Results

3.4.1. Monobit Test Analysis Results

The monobit test results from three different sources
(Pseudo, Webcam, and LDR Sensor) are compared in this
study. The frequency test, sometimes referred to as the
monobit test, is discovered by counting the occurrences of
the integers 0 and 1 in the sequence. 512-bit values should
be one- and 512-bit values should be zero in the 1024-bit
long outputs acquired from the sensors in the preceding
section. The 1024-bit sequence's monobit test result, which
was produced using the Random function in the Python
programming language to produce pseudorandom numbers,
is shown in Table 6 and shown graphically in Figure 12. The
distance between one and zero for the 1024-bit sequence is
34.

Table 6. Monobit test of pseudo random number

generation.
Nu. Expected Observed

Number of 1’s 512 495
Number of 0’s 512 529

Figure 12. Monobit test chart of pseudo random number

generation.

 The monobit test results of the output sequences
produced by four different techniques using a length of
1024 bits are given in Table 7. The graphical representation
is shown in Figure 13, and raw data with x and y coordinate
values were obtained by detecting the movements of the
electrical radiations in the Tesla sphere using the Webcam
sensor. The difference between one and zero for the 1024-

450

500

550

Number of 0's
Number of 1's

Expected Observed

IJCSNS Internat൴onal Journal of Computer Sc൴ence and Network Secur൴ty, VOL.24 No.4, Apr൴l 2024

83

bit sequence using the Mod 16 approach is 10, the Md5
method is 20, the Sha256 method is 18, and the sequence
created by omitting the last bits has a difference of 24. The
sequence acquired using the Mod 16 approach was found to
be the most similar to the expected values, while the
sequence obtained using the last bit method was found to be
the furthest from them. In this test, it was found that, in
comparison to the pseudorandom number produced by the
computer, the numbers generated by all techniques
employing the Webcam sensor produced good results.

Table 7. Monobit test with webcam.

Nu. Expected
Observed

Mod 16 Md5 Sha256 End Bits
Number of 1’s 512 507  522  521  524
Number of 0’s 512 517  502  503 500

Figure 13. Monobit test chart with webcam.

Table 8 lists the findings of the 1024-bit long arrays'

monobit tests, which were conducted using 4 different
techniques to gauge the radiation strength in the Tesla
sphere using an LDR sensor. Figure 14 shows a graphical
representation of the data. When using the Mod 16 method,
the difference between one and zero for the 1024-bit array
is seen to be 22, when using the Md5 method it is 12 and
the Sha256 method to be 32, and when using the array
created by eliminating the final few bits it is 16. The
sequence acquired using the Md5 method was found to be
the most similar to the expected values, while the sequence
obtained using the Sha256 approach was found to be the
furthest from them. In this experiment, it was found that the
numbers generated using any of the LDR sensor's methods
performed better than the pseudorandom numbers produced
by the computer.

Table 8. Monobit test with LDR sensor.

Nu. Expected
Observed

Mod 16 Md5 Sha256 End Bits

Number of 1’s 512 501 506 528 520
Number of 0’s 512 523 518 496 504

Figure 14. Monobit test chart with LDR sensor.

3.4.2. Poker Test Analysis Results

The poker test results from three different sources

(Pseudo, Webcam, and LDR Sensor) are compared in this
study. In this test, 5000 numbers are produced by dividing
a random sequence of 20000 bits into blocks of four bits.
Numbers are expressed in the hexadecimal base using these
four bits. The computed poker value must fall between 1.03
and 57.4 in order to pass the test.

Table 9 and Figure 15 show the poker test outcome for
the 20000-bit sequence produced by the Random function
in the Python computer language, which generates pseudo-
random numbers. The poker value for a 20000-bit sequence
was found to be 13.9904.

Table 9. Poker test of pseudo random number
generation.

Nu. Expected Observed
Poker Values (X) 1.03 < X < 57.4 13.9904

Figure 15. Poker test chart of pseudo random number

generation.

After using a webcam sensor to monitor the movement
of electrical radiations in the Tesla sphere and obtaining raw
data with x and y coordinate values, the results of the poker
test for 20000 bit output sequences generated by four
different methods are shown in Table 10 and the graphical

480

500

520

540

Mod 16 MD5
SHA256

End Bits

Expected Number of 0 and 1

Number of Observed 0's

Number of Observed 1's

480

500

520

540

Mod 16 MD5
SHA256

End Bit

Expected Number of 0 and 1

Number of Observed 0's

Number of Observed 1's

‐10

40

90

Poker Values of Pseudo RNG

Expected Minimum Expected Maximum

Poker Values

IJCSNS Internat൴onal Journal of Computer Sc൴ence and Network Secur൴ty, VOL.24 No.4, Apr൴l 2024

84

representation is shown in Figure 16. The poker value of the
20000 bit sequence is 21.4720 for the Mod 16 technique,
0.8256 for the Md5 method, -5.1647 for the Sha256
approach and 10.1504 for the sequence produced by
skipping the last bits. It is observed that Mod16 and the last
bits method passed the test successfully.

Table 10. Poker test with Webcam.

Nu. Expected
Observed

Mod
16

Md5 Sha256
End
Bits

Poker Value
(X)

1.03 < X < 57.4  21.472 0.8256  -5.1647  10.1504

Figure 16. Poker test chart with Webcam.

The poker test results for 20000 bit long sequences

obtained using 4 different techniques by measuring the
radiation intensity in the Tesla sphere with the LDR sensor
are given in Table 11 and the graphical representation is
given in Figure 17. The poker value of the 20000 bit
sequence is 16.3392 for the Mod 16 technique, -54.4511 for
the Md5 method, -5.8944 for the Sha256 approach and
20.3136 for the sequence produced by taking the last bits. It
is observed that the last bits and Mod 16 method passed the
test successfully.

Table 11. Monobit test with LDR sensor.

Nu. Expected
Observed

Mod 16 Md5 Sha256
End
Bits

Poker
Value(x)

1.03 < X < 57.4 16.3392 -54.4511 -5.8944 20.3136

Figure 17. Monobit test chart with LDR sensor.

When the data obtained from RGB, camera and LDR

sensors are analysed, it is observed that the same values are
obtained in RGB values and close values are obtained as
output, although they are not the same values in the LDR
sensor. In the camera sensor, two different x and y values
were obtained in each cycle, which were not related to each
other, and therefore better quality raw data were obtained
compared to the other two sensors. When the methods were
analysed, it was observed that Md5 and Sha256 did not pass
some tests and the Mod 16 method gave better outputs, so
the Mod 16 method was used.

3.5. Statistical Test Results

The FIPS 140-1 test suite tests for randomness on a 20000
long generated sequence. This test suite consists of monobit,
poker, run and long run tests. The successful results of this
test with the camera sensor and Mod 16 method are shown
in Table 12.

Table 12. FIPS test results
Test Expected Result

Monobit 9654< X <10346 10037
Poker 1.03< X <57.4 7.98

Run

Block
Length

Block
Number
Range

0’s
Number

1’s
Number

1 2267-2733 2494 2520
2 1079-1421 1247 1191
3 502-748 662 649
4 223-402 297 328
5 90-223 153 150
6 90-223 148 163

Long Run <= 34 Passed

The NIST 800-22 test suite tests randomness on one

million long generated sequences. This test suite consists of
16 separate tests, and to be considered successful, the P
value produced at each stage of the test must meet the P ≥
0.01 requirement. The successful results of this test with the
camera sensor and Mod 16 method are shown in Table 13.

‐10

10

30

50

70

Mod 16 MD5
SHA256

End Bit

Expected Minimum Expected Maximum

Poker Values

‐60

‐10

40

90

Mod 16 MD5 SHA256 End Bit

Expected Minimum Expected Maximum

Poker Values

IJCSNS Internat൴onal Journal of Computer Sc൴ence and Network Secur൴ty, VOL.24 No.4, Apr൴l 2024

85

Table 13. NIST test results

No. Test Name P Value Result
1 Frequency 0.7634 Successful
2 Block Frequency 0.1559 Successful
3 Run 0.8625 Successful

4
Test for the Longest Run of
Ones in a Block

0.7775 Successful

5 Binary Matrix Rank 0.4399 Successful
6 Discrete Fourier Transform 0.6872 Successful

7
Non-Overlapping Template
Mathing

0.7312 Successful

8
Overlapping Template
Mathing

0.0478 Successful

9
Maurer's Universal
Statistical

0.3666 Successful

10 Linear Complexity 0.8760 Successful
11 Serial - 1 0.8307 Successful
12 Serial - 2 0.8601 Successful
13 Approximate Entropy 0.8676 Successful
14 Cumulative Sums 0.9532 Successful
15 Random Excursions (x=+1) 0.3708 Successful

16
Random Excursions Variant
(x=-1)

0.6782 Successful

4. Conclusion

In cryptographic applications, randomness is the most
crucial element of security and confidentiality. Therefore,
the security of the entire system is significantly impacted by
the quality of random number generators utilized in various
communication contexts. Because these two can be
combined, random numbers can be generated as actual, fake,
or hybrid. To assess the quality of these generated numbers,
several statistical tests are performed. The entropy of the
noise source is intimately related to the security of RNGs.
By getting the seed value from the physical world using IoT
sensors, this study aims to improve entropy levels. The
sensors created in the Raspberry Pi environment were used
to collect raw data from the Tesla sphere, the source of the
noise. Eight different readings were collected using these
two sensors, and they were then examined using the Mod
16, Last Bits, Sha256, and Md5 techniques. The raw data
obtained with the Mod 16 approach and the camera sensor
produced superior results than the other methods, according
to the assessments with the Monobit and Poker tests.
Sequences obtained by the Mod 16 method successfully
passed the FIPS 140-1 and NIST 800-22 test suites,
confirming their randomness.

As a result, it has been discovered through this project
that seed values for random number generation can be
derived from the sensors of IoT systems, which are
currently evolving quickly and which we will encounter
more frequently in the future in our daily lives. In contrast
to the studies in the literature, using the Tesla sphere as the
noise source creates a chaotic environment where random,
non-repeating data are collected in the next step. It has been

shown that the keys that come from the electrical radiations
in the centre of the sphere are more accurate than the keys
that come from pseudo-random number generators. 

Acknowledgments

This study was supported by Burdur Mehmet Akif Ersoy
University Scientific Research Projects Commission.
Number 0800-YL-21.

References

[1] N. Gözüaçık. "Parent Based Rout൴ng Algor൴thm for RPL

Used ൴n IoT Networks." MSc Thes൴s, Istanbul Techn൴cal
Un൴vers൴ty, İstanbul, Türk൴ye (2015).

[2] M. Cont൴, A. Dehghantanha, K. Franke, and S. Watson.
“Internet of Th൴ngs secur൴ty and forens൴cs: Challenges
and opportun൴t൴es.” Future Generat൴on Computer Systems
78, (2018): 544–546.

[3] A. I. Sunny, A. Zhao, L. L൴, and S. Kanteh Sak൴l൴ba.
“Low-Cost IoT-Based Sensor System: A Case Study on
Harsh Env൴ronmental Mon൴tor൴ng.” Sensors 21, no.1
(2021): 214.

[4] Y. Yalman and İ. Ertürk. "The Use of Steganography ൴n
Ensur൴ng Personal Informat൴on Secur൴ty." ÜNAK
Ex൴stence ൴n the Informat൴on Age "Opportun൴t൴es and
Threats" Sympos൴um 2, no. 2 (2016): 215.

[5] E. Atar, O. K. Ersoy, and L. Özyılmaz. "Hybr൴d Data
Compress൴on and Opt൴cal Cryptography w൴th Steep
Match൴ng Search Method." Journal of the Faculty of
Eng൴neer൴ng and Arch൴tecture of Gaz൴ Un൴vers൴ty 32, no.
1 (2017): 139–147.

[6] M. Yılmaz and S. Ballı. "Development of an Intell൴gent
Select൴on System for the Use of Data Encrypt൴on
Algor൴thms." Internat൴onal Journal of Informat൴on
Secur൴ty Eng൴neer൴ng 2, no. 2 (2016): 18–28.

[7] F. Maqsood, M. Ahmed, M. Mumtaz Al൴, and M. Al൴ Shah.
“Cryptography: A Comparat൴ve Analys൴s for Modern
Techn൴ques.” Internat൴onal Journal of Advanced
Computer Sc൴ence and Appl൴cat൴ons 8, no. 6 (2017).

[8] O. G. Abood, S. Gu൴rgu൴s, and S. K. Gu൴rgu൴s. “A Survey
on Cryptography Algor൴thms,” Internat൴onal Journal of
Sc൴ent൴f൴c and Research Publ൴cat൴ons 8, no. 7 (2018).

[9] A. Coşkun and Ü. Ülker. "Development of a
Cryptography Algor൴thm for Nat൴onal Informat൴on
Secur൴ty and Rel൴ab൴l൴ty Determ൴nat൴on Aga൴nst Letter
Frequency Analys൴s." Journal of Informat൴on Technology
6, no. 2 (2013): 31.

[10] V. Tavas. "Random Number Generators Su൴table for
Integrat൴on." PHd Thes൴s, Istanbul Techn൴cal Un൴vers൴ty,
İstanbul, Türk൴ye (2011).

[11] A. Ş. Dem൴rkol. "Adc Based Random Number Generator
w൴th Chaot൴c Osc൴llator Input." PHd Thes൴s, Istanbul
Techn൴cal Un൴vers൴ty, İstanbul, Türk൴ye (2007).

[12] M. Huang, Z. Chen, Y. Zhang, and H. Guo. “A Phase
Fluctuat൴on Based Pract൴cal Quantum Random Number
Generator Scheme w൴th Delay-Free Structure.” Appl൴ed
Sc൴ences 10, no. 7 (2020): 2431.

[13] D. Yosunlu and E. Avaroğlu. "Invest൴gat൴on of Post
Process൴ng Algor൴thms." Journal of Computer Sc൴ence
and Technology 1, no. 2 (2020): 66–73.

IJCSNS Internat൴onal Journal of Computer Sc൴ence and Network Secur൴ty, VOL.24 No.4, Apr൴l 2024

86

[14] E. A. Luengo, M. B. L. Cerna, L. J. G. V൴llalba, D.
Hurley-Sm൴th, and J. Hernandez-Castro. “Cr൴t൴cal
Analys൴s of Hypothes൴s Tests ൴n Federal Informat൴on
Process൴ng Standard (140-2).” Entropy 24, no. 5 (2022):
613.

[15] F. Özkaynak. “Cryptolog൴cal Random Number
Generators." Turkey Informat൴cs Foundat൴on Journal of
Sc൴ence and Eng൴neer൴ng 8, no. 2, (2016): 37–45.

[16] Rehman, A. U., Hussa൴n, M., Idress, M., Munawar, A.,
Att൴que, M., Anwar, F., and Ahmad, M. “E-cult൴vat൴on
us൴ng the IoT w൴th Adafru൴t cloud." Internat൴onal Journal
of Advance and appl൴ed Sc൴ences 7, no. 9 (2020): 75–82.

[17] H. Üçgün, F. Gömbec൴, U. Yüzgeç, and N. Yalç൴n. "Real-
t൴me Indoor A൴r Qual൴ty Mon൴tor൴ng System w൴th IoT
Based Platform." B൴lec൴k Şeyh Edebal൴ Un൴vers൴ty
Journal of Sc൴ence and Technology 7, no. 1 (2020): 370–
381.

[18] U. Ansar൴, A. K. Chaudhary, and S. Verma. “True
Random Number Generator (TRNG) Us൴ng Sensors for
Low Cost IoT Appl൴cat൴ons.” 2022 Internat൴onal
Conference on Commun൴cat൴on, Comput൴ng and Internet
of Th൴ngs (IC3IoT), (2022): 1-6.

[19] Y. Genç and S. Arslan Tuncer, "Human Movements
Based True Random Number Generat൴on." B൴tl൴s Eren
Un൴vers൴ty Journal of Sc൴ence and Technology 8, no. 1
(2019): 261–269.

[20] S. N. Yaşar, F. Ceren D൴k൴c൴, E. Tany൴ld൴z൴, and E.
Karaköse. "Des൴gn of a Generator Based on M൴ddle
Square and SHA3 Algor൴thm for Random൴sat൴on
Requ൴rements ൴n Sc൴ence and Eng൴neer൴ng Stud൴es." Fırat
Un൴vers൴ty Journal of Sc൴ence and Technology 33, no. 1
(2021): 81–91.

[21] I. Te Chen. “Random numbers generated from aud൴o and
v൴deo sources.” Mathemat൴cal problems ൴n eng൴neer൴ng.
(2013).

[22] T. Etem and T. Kaya. "Tr൴v൴um-L൴near Conjugate
Generator Based B൴t Generat൴on for Image Encrypt൴on."
Fırat Un൴vers൴ty Journal of Eng൴neer൴ng Sc൴ence 32, no. 1,
(2020): 287–294.

[23] F. Ozkaynak, H. I. Ozdem൴r, and A. B. Ozer.
“Cryptograph൴c random number generator for mob൴le
dev൴ces.” 2015 23rd S൴gnal Process൴ng Commun൴cat൴on
Appl൴cat൴on Conference, (2015): 1733–1736.

[24] Z. E. Sezg൴n. "Tesla Co൴l." Maltepe Un൴vers൴ty, (2021).

OĞUZHAN ARSLAN He received his
bachelor's degree in computer engineering
from Fırat University in 2014 and his master's
degree without thesis in information systems
from Gazi University in 2021. He continues

his master's degree with thesis in the field of cryptography at
Burdur Mehmet Akif Ersoy University, Department of Computer
Engineering.

İSMAİL KIRBAŞ received his bachelor's
degree in electronics and computer education
from Kocaeli University in 2000. He received
his master's degree from the same university
in 2009. He completed his doctoral thesis at
Sakarya University, Institute of Science and
Technology in 2013. He was given the rank
of associate professor in 2018, and since then,
he has been focusing on the internet of things,

time series analysis, machine learning, mobile and the web-based
application development.

