DOI QR코드

DOI QR Code

Shear behaviour of AAC masonry reinforced by incorporating steel wire mesh within the masonry bed and bed-head joint

  • Richard B. Lyngkhoi (Department of Civil Engineering, National Institute of Technology Meghalaya) ;
  • Teiborlang Warjri (Department of Civil Engineering, National Institute of Technology Meghalaya) ;
  • Comingstarful Marthong (Department of Civil Engineering, National Institute of Technology Meghalaya)
  • Received : 2024.02.26
  • Accepted : 2024.03.20
  • Published : 2024.05.25

Abstract

In India's north-eastern region, low-strength autoclaved aerated concrete (AAC) blocks are widely used for constructing masonry structures, making them susceptible to lateral forces due to their low tensile and shear strengths and brittleness nature. The absence of earthquake-resistant attributes further compromises their resilience during seismic events. An economically viable solution to enhance the structural integrity of these masonry structures involves integrating steel wire mesh within the masonry mortar joints. This study investigates the in-plane shear behaviour of AAC masonry by employing two approaches: incorporating steel wire mesh within the masonry bed joint "BJ" and the masonry bed and head joint "BHJ". These approaches aim to augment strength and ductility, potentially serving as earthquake-resistant attributes in masonry structures. Three distinct variations of steel wire mesh and three reinforcing arrangements, i.e. (-), (L) and (Z) arrangement were employed to reinforce the two approaches. The test result reveals a significant enhancement in structural performance upon inclusion of steel wire mesh in both reinforcing approaches, with the "BHJ" approach outperforming the "BJ" approach and the unreinforced masonry, along with increase in capacity as the wire mesh size increases. Furthermore, the effectiveness of the reinforcing arrangement is ranked with the (Z) arrangement showing the largest performance, followed by the (L) and (-) arrangement.

Keywords

References

  1. Agnihotri, P., Singhal, V. and Rai, D.C. (2013), "Effect of in-plane damage on out-of-plane strength of unreinforced masonry walls", Eng. Struct., 57, 1-11. https://doi.org/10.1016/j.engstruct.2013.09.004.
  2. Aranguren, J., Vieux-Champagne, F., Duriez, M. and Aubert, J.E. (2020), "Experimental analysis of timber inclusions effect on paraseismic behavior of earth masonry walls", Eng. Struct., 212, 110429. https://doi.org/10.1016/j.engstruct.2020.110429.
  3. Artino, A., Evola, G., Margani, G. and Marino, E.M. (2019), "Seismic and energy retrofit of apartment buildings through autoclaved aerated concrete (AAC) blocks infill walls", Sustainab., 11(14), 3939. https://doi.org/10.3390/su11143939.
  4. ASTM A370 (2022), Standard Test Methods and Definitions for Mechanical Testing of Steel Products, ASTM International, West Conshohocken, PA, USA.
  5. ASTM C1006-07 (2013), Standard Test Method for Splitting Tensile Strength of Masonry Units, ASTM International, West Conshohocken, PA, USA.
  6. ASTM C1314 (2023a), Standard test method for compressive strength of masonry prisms, ASTM International, West Conshohocken, PA, USA.
  7. ASTM C496M (2017), Standard Test Methods for Splitting Tensile Strength of Cylindrical Concrete Specimens, ASTM International, West Conshohocken, PA, USA.
  8. ASTM E519M (2022), Standard test method for diagonal tension (Shear) in masonry Assemblages, ASTM International, West Conshohocken, PA, USA.
  9. Babatunde, S.A. (2017), "Review of strengthening techniques for masonry using fiber reinforced polymers", Compos. Struct., 161, 246-255. https://doi.org/10.1016/j.compstruct.2016.10.132.
  10. Banerjee, S., Nayak, S. and Das, S. (2019), "Enhancing the flexural behaviour of masonry wallet using PP band and steel wire mesh", Constr. Build. Mater., 194, 179-191. https://doi.org/10.1016/j.conbuildmat.2018.11.001.
  11. Banerjee, S., Nayak, S. and Das, S. (2018), "Enhancing shear capacity of masonry wallet using PP-band and steel wire mesh", IOP Conf. Ser.: Mater. Sci. Eng., 431(7), 072004. https://doi.org/10.1088/1757-899X/431/7/072004.
  12. Banerjee, S., Nayak, S. and Das, S. (2020a), "Improving the in-plane behavior of brick masonry wallet using PP band and steel wire mesh", J. Mater. Civil Eng., 32(6), 1-15. https://doi.org/10.1061/(asce)mt.1943-5533.0003159.
  13. Banerjee, S., Nayak, S. and Das, S. (2020b), "Shear and flexural behaviour of unreinforced masonry wallets with steel wire mesh", J. Build. Eng., 30, 101254. https://doi.org/10.1016/j.jobe.2020.101254.
  14. Behera, B. and Nanda, R.P. (2021), "In-plane shear strengthening of brick masonry panel with geogrid reinforcement embedded in bed and bed-head joints mortar", Eng. Struct., 227, 111411. https://doi.org/10.1016/j.engstruct.2020.111411.
  15. Behera, B. and Nanda, R.P. (2022), "Geogrid reinforced brick buildings for earthquake disaster mitigations", Case Stud. Constr. Mater., 16, e01113. https://doi.org/10.1016/j.cscm.2022.e01113.
  16. Bhosale, A., Zade, N.P., Davis, R. and Sarkar, P. (2019), "Experimental investigation of autoclaved aerated concrete masonry", J. Mater. Civil Eng., 31(7), 1-11. https://doi.org/10.1061/(asce)mt.1943-5533.0002762.
  17. BS EN 1052-3 (2002), Methods of Test for Masonry, Determination of Initial Shear Strength, The British Standards Institution, London, UK.
  18. BS EN 1998-1 (2004), Eurocode 8: Design of Structures for Earthquake Resistance - Part 1: General Rules, Seismic Actions and Rules for Buildings, European Committee for Standardization, Brussels, Belgium.
  19. Cheng, S., Yin, S. and Jing, L. (2020), "Comparative experimental analysis on the in-plane shear performance of brick masonry walls strengthened with different fiber reinforced materials", Constr. Build. Mater., 259, 120387. https://doi.org/10.1016/j.conbuildmat.2020.120387.
  20. Chourasia, A., Singh, S.K., Singhal, S., Singh, D. and Chauhan, N. (2021), "Detailed vulnerability assessment and seismic upgradation of non-engineered masonry building", J. Struct. Integr. Maint., 6(2), 123-134. https://doi.org/10.1080/24705314.2021.1875176.
  21. Chourasia, A., Singhal, S. and Parashar, J. (2019), "Experimental investigation of seismic strengthening technique for confined masonry buildings", J. Build. Eng., 25, 100834. https://doi.org/10.1016/j.jobe.2019.100834.
  22. Churilov, S. and Dumova-Jovanoska, E. (2013), "In-plane shear behaviour of unreinforced and jacketed brick masonry walls", Soil Dyn. Earthq. Eng., 50, 85-105. https://doi.org/10.1016/j.soildyn.2013.03.006.
  23. Corradi, M., Borri, A., Castori, G. and Sisti, R. (2014), "Shear strengthening of wall panels through jacketing with cement mortar reinforced by GFRP grids", Compos. Part B: Eng., 64, 33-42. https://doi.org/10.1016/j.compositesb.2014.03.022.
  24. Corradi, M., Borri, A. and Vignoli, A. (2003), "Experimental study on the determination of strength of masonry walls" Constr. Build. Mater., 17(5), 325-337. https://doi.org/10.1016/S0950-0618(03)00007-2.
  25. Como, M. (2013), Statics of Historic Masonry Constructions, 3rd Edition, Springer, Berlin, Germany.
  26. Costa, A.A., Penna, A. and Magenes, G. (2011), "Seismic performance of autoclaved aerated concrete (AAC) masonry: From experimental testing of the in-plane capacity of walls to building response simulation", J. Earthq. Eng., 15(1), 1-31. https://doi.org/10.1080/13632461003642413.
  27. Cowan, H.J. (1977), "A history of masonry and concrete domes in building construction", Build. Environ., 12(1), 1-24. https://doi.org/10.1016/0360-1323(77)90002-6. 
  28. Eslamlou, S.D., Masia, M.J., Totoev, Y.Z. and Page, A.W. (2019), "Effect of retrofitting on the structural factors for seismic assessment of unreinforced masonry structures: A review", Australian J. Strust. Eng., 20, 26-53. https://doi.org/10.1080/13287982.2019.1565288.
  29. Debnath, P., Halder, L. and Chandra Dutta, S. (2022), "Damage survey and seismic vulnerability assessment of unreinforced masonry structures in low-intensity Ambasa earthquake of northeast India", Struct., 44, 372-388. https://doi.org/10.1016/j.istruc.2022.08.005.
  30. Deng, M., Zhang, W. and Yang, S. (2020), "In-plane seismic behavior of autoclaved aerated concrete block masonry walls retrofitted with high ductile fiber-reinforced concrete", Eng. Struct., 219, 110854. https://doi.org/10.1016/j.engstruct.2020.110854.
  31. Devi, N.R., Dhir, P.K. and Sarkar, P. (2022), "Influence of strain rate on the mechanical properties of autoclaved aerated concrete", J. Build. Eng., 57, 104830. https://doi.org/10.1016/j.jobe.2022.104830.
  32. Deyazada, M., Vandoren, B., Dragan, D. and Degee, H. (2019), "Experimental investigations on the resistance of masonry walls with AAC thermal break layer", Constr. Build. Mater., 224, 474-492. https://doi.org/10.1016/j.conbuildmat.2019.06.205.
  33. Dutta, S.C., Mukhopadhyay, P.S., Saha, R. and Nayak, S. (2015), "2011 Sikkim earthquake at eastern himalayas: Lessons learnt from performance of structures", Soil Dyn. Earthq. Eng., 75, 121-129. https://doi.org/10.1016/j.soildyn.2015.03.020.
  34. Dutta, S.C., Nayak, S., Acharjee, G., Panda, S.K. and Das, P.K. (2016), "Gorkha (Nepal) earthquake of April 25, 2015: Actual damage, retrofitting measures and prediction by RVS for a few typical structures", Soil Dyn. Earthq. Eng., 89, 171-184. https://doi.org/10.1016/j.soildyn.2016.08.010.
  35. Elmalyh, S., Bouyahyaoui, A., Cherradi, T., Rotaru, A. and Mihai, P. (2020), "In-plane shear behavior of unreinforced masonry walls strengthened with fiber reinforced polymer composites", Adv. Sci. Technol. Eng. Syst., 5(2), 360-367. https://doi.org/10.25046/AJ050247.
  36. Gattesco, N. and Boem, I. (2015), "Experimental and analytical study to evaluate the effectiveness of an in-plane reinforcement for masonry walls using GFRP meshes", Constr. Build. Mater., 88, 94-104. https://doi.org/10.1016/j.conbuildmat.2015.04.014.
  37. Giaretton, M., Dizhur, D., Garbin, E., Ingham, J.M. and da Porto, F. (2018), "In-plane strengthening of clay brick and block masonry walls using textile-reinforced mortar", J. Compos. Constr., 22(5), 1-10. https://doi.org/10.1061/(asce)cc.1943-5614.0000866.
  38. Haach, V.G., Vasconcelos, G. and Lourenco, P.B. (2010), "Experimental analysis of reinforced concrete block masonry walls subjected to in-plane cyclic loading", J. Struct. Eng., 136(4), 452-462. https://doi.org/10.1061/(asce)st.1943-541x.0000125.
  39. Halder, L., Chandra Dutta, S., Sharma, R.P. and Bhattacharya, S. (2021), "Lessons learnt from post-earthquake damage study of Northeast India and Nepal during last ten years: 2021 Assam earthquake, 2020 Mizoram earthquake, 2017 Ambasa earthquake, 2016 Manipur earthquake, 2015 Nepal earthquake, and 2011 Sikkim earthquake", Soil Dyn. Earthq. Eng., 151, 106990. https://doi.org/10.1016/j.soildyn.2021.106990.
  40. Halder, L., Dutta, S.C., Debnath, P. and Sharma, R.P. (2021), "Seismic vulnerability assessment of low-rise unreinforced masonry buildings in Northeast India considering variability of material properties", Asian J. Civil Eng., 22(5), 843-863. https://doi.org/10.1007/s42107-021-00350-7.
  41. Hendry, E.A.W. (2001), "Masonry walls: Materials and construction" Constr. Build. Mater., 15(8), 323-330. https://doi.org/10.1016/S0950-0618(01)00019-8.
  42. Hill, D. (1984), A History of Engineering in Classical and Medieval Times, Croom Helm, London, UK.
  43. Hernoune, H., Benabed, B., Kanellopoulos, A., Al-Zuhairi, A.H. and Guettala, A. (2020), "Experimental and numerical study of behaviour of reinforced masonry walls with NSM CFRP strips subjected to combined loads", Build., 10(6), 103. https://doi.org/10.3390/buildings10060103.
  44. IS 1905 (1987), Indian Standard Code of Practice for Structural Use of Unreinforced Masonry, Bureau of Indian Standards, New Delhi, India.
  45. IS 1893 (2016), Criteria for Earthquake Resistant Design of Structures, Part 1: General Provisions and Buildings, Bureau of Indian Standards, New Delhi, India.
  46. IS 2185 (1985), Concrete Masonry Units, Part 3: Autoclaved Cellular Aerated Concrete Blocks, Bureau of Indian Standards, New Delhi, India.
  47. IS 2250 (1981), Code of practice for preparation and use of masonry mortars, Bureau of Indian Standards, New Delhi, India.
  48. IS 4326 (1967), Earthquake Resistant Design and Construction of Buildings - Code of Practice, Bureau of Indian Standards, New Delhi, India.
  49. IS 5816 (1999), Splitting Tensile Strength of Concrete-Method of Test, Bureau of Indian Standards, New Delhi, India.
  50. IS 6441 (1972), Methods of Test for Autoclaved Cellular Concrete Products, Part 1: Determination of Unit Weight or Bulk Density and Moisture Content, Bureau of Indian Standards, New Delhi. India.
  51. IS 6441 (1972), Methods of Test for Autoclaved Cellular Concrete Products, Part 5: Determination of Compressive strength, Bureau of Indian Standards, New Delhi. India.
  52. Ismail, N. and Khattak, N. (2019), "Observed failure modes of unreinforced masonry buildings during the 2015 Hindu Kush earthquake", Earthq. Eng. Eng. Vib., 18(2), 301-314. https://doi.org/10.1007/s11803-019-0505-x.
  53. Jagadish, K.S., Raghunath, S. and Nanjunda Rao, K.S. (2003), "Behaviour of masonry structures during the Bhuj earthquake of January 2001", Proc. Indian Acad. Sci. Earth Planet. Sci., 112(3), 431-440. https://doi.org/10.1007/BF02709270.
  54. Jain, S.K. (2016), "Earthquake safety in India: Achievements, challenges and opportunities", Bull. Earthq. Eng., 14, 1337-1436. https://doi.org/10.1007/s10518-016-9870-2.
  55. Jasinski, R. (2019), "Research on the influence of bed joint reinforcement on strength and deformability of masonry shear walls", Mater., 12(16). https://doi.org/10.3390/ma12162543.
  56. Jasinski, R. and Drobiec, L. (2016), "Study of Autoclaved aerated concrete masonry walls with horizontal reinforcement under compression and shear", Procedia Eng., 161, 918-924. https://doi.org/10.1016/j.proeng.2016.08.758.
  57. Jiao, Z., Wang, Y., Zheng, W., Huang, W. and Zhao, Y. (2019), "Bond properties of alkali-activated slag concrete hollow block masonry with different mortar strength grades", Constr. Build. Mater., 216, 149-165. https://doi.org/10.1016/j.conbuildmat.2019.05.007.
  58. Kadam, S.B., Singh, Y. and Li, B. (2014), "Strengthening of unreinforced masonry using welded wire mesh and micro-concrete - Behaviour under in-plane action", Constr. Build. Mater., 54, 247-257. https://doi.org/10.1016/j.conbuildmat.2013.12.033.
  59. Kaluza, M., Galman, I., Kubica, K. and Agneloni, C. (2015), "Diagonal tensile strength of AAC blocks masonry with thin joints superficially strengthened by reinforced using GFRP net plastering", Key Eng. Mater., 624, 363-370. https://doi.org/10.4028/www.scientific.net/KEM.624.363.
  60. Kanchidurai, S., Krishanan, P.A., Baskar, K. and Mohan, K.S.R. (2019), "Strength characteristic of novel mesh embedment technique for new brick construction with least expensive material", Eng. Struct., 178, 484-492. https://doi.org/10.1016/j.engstruct.2018.10.062.
  61. Kouris, L.A.S. and Triantafillou, T.C. (2018), "State-of-the-art on strengthening of masonry structures with textile reinforced mortar (TRM)", Constr. Build. Mater., 188, 1221-1233. https://doi.org/10.1016/j.conbuildmat.2018.08.039.
  62. Lan, G., Wang, Y., Xin, L. and Liu, Y. (2020), "Shear test method analysis of earth block masonry mortar joints", Constr. Build. Mater., 264, 119997. https://doi.org/10.1016/j.conbuildmat.2020.119997.
  63. Liu, C., Hou, J., Hao, Y., Hao, H. and Meng, X. (2021), "Effect of high strain rate and confinement on the compressive properties of autoclaved aerated concrete", Int. J. Impact Eng., 156, 103943. https://doi.org/10.1016/j.ijimpeng.2021.103943.
  64. Lyngkhoi, R.B., Warjri, T., Warlarpih, W. and Marthong, C. (2023a), "Effectiveness of steel wire mesh as a strengthening material for masonry walls: A review", Struct. Monit. Maint., 10(2), 117-132. https://doi.org/10.12989/smm.2023.10.2.117.
  65. Lyngkhoi, R.B., Warjri, T. and Marthong, C. (2023b), "Use of steel wire mesh for compressive strength enhancement of AAC masonry wall", Mater. Today: Proc., 2023, 1. https://doi.org/10.1016/j.matpr.2023.02.423.
  66. Lyngkhoi, R.B., Warjri, T. and Marthong, C. (2023c), "Shear performance of AAC masonry triplets strengthened by reinforcing steel wire mesh in the bed and bed-head joint", Earthq. Struct., 25(3), 149-160. https://doi.org/10.12989/eas.2023.25.3.149.
  67. Lyngkhoi, R.B., Warjri, T. and Marthong, C. (2023d), "Experimental investigation of AAC masonry walls reinforced with steel wire mesh embedded in bed and bed-head joint under axial compressive loading", Constr. Build. Mater., 392, 132035. https://doi.org/10.1016/j.conbuildmat.2023.132035.
  68. Marbaniang, D.F., Warjri, T. and Marthong, C. (2022), "Out-of-plane bending of masonry wall embedding with welded wire mesh (WWM) in different orientations", Innov. Infrastr. Solut., 7(1), 10-14. https://doi.org/10.1007/s41062-021-00676-w.
  69. Marcari, G., Manfredi, G., Prota, A. and Pecce, M. (2007), "In-plane shear performance of masonry panels strengthened with FRP", Compos. Part B: Eng., 38(7-8), 887-901. https://doi.org/10.1016/j.compositesb.2006.11.004.
  70. Murty, C. (2005), Earthquake Tips, Indian Institute of Technology Kanpur, Kanpur, India.
  71. Narayanan, N. and Ramamurthy, K. (2000), "Structure and properties of aerated concrete: A review", Cement Concrete Compos., 22(5), 321-329. https://doi.org/10.1016/S0958-9465(00)00016-0.
  72. National Disaster Management Authority (2013), Technical Document on Typology of Buildings in India, National Disaster Management Authority, New Delhi, India.
  73. Pachideh, G. and Gholhaki, M. (2019), "Effect of pozzolanic materials on mechanical properties and water absorption of autoclaved aerated concrete", J. Build. Eng., 26, 100856. https://doi.org/10.1016/j.jobe.2019.100856.
  74. Padalu, P.K.V.R., Singh, Y. and Das, S. (2018), "Experimental investigation of out-of-plane behaviour of URM wallettes strengthened using welded wire mesh", Constr. Build. Mater., 190, 1133-1153. https://doi.org/10.1016/j.conbuildmat.2018.09.176.
  75. Pavan, G.S. and Nanjunda Rao, K.S. (2016), "Behavior of brick-mortar interfaces in FRP-strengthened masonry assemblages under normal loading and shear loading", J. Mater. Civil Eng., 28(2), 1-14. https://doi.org/10.1061/(asce)mt.1943-5533.0001388.
  76. Penna, A., Mandirola, M., Rota, M. and Magenes, G. (2015), "Experimental assessment of the in-plane lateral capacity of autoclaved aerated concrete (AAC) masonry walls with flat-truss bed-joint reinforcement", Constr. Build. Mater., 82, 155-166. https://doi.org/10.1016/j.conbuildmat.2015.02.057.
  77. Piekarczyk, A. (2018), "Flexural strength of AAC masonry with bed joint reinforcement", Ce/Papers, 2(4), 389-396. https://doi.org/10.1002/cepa.887.
  78. Raj, A., Borsaikia, A.C. and Dixit, U.S. (2020a), "Bond strength of Autoclaved Aerated Concrete (AAC) masonry using various joint materials", J. Build. Eng., 28, 101039. https://doi.org/10.1016/j.jobe.2019.101039.
  79. Raj, A., Borsaikia, A.C. and Dixit, U.S. (2020b), "Evaluation of mechanical properties of autoclaved aerated concrete (AAC) block and its masonry", J. Inst. Eng.: Ser. A, 101(2), 315-325. https://doi.org/10.1007/s40030-020-00437-5.
  80. Rathi, S.O. and Khandve, P.V. (2016), "Cost effectiveness of using AAC blocks for building construction in residential building and public buildings", Int. J. Res. Eng. Technol., 5, 517-520. https://doi.org/10.15623/ijret.2016.0505097.
  81. Rossetto, T. and Peiris, N. (2009), "Observations of damage due to the Kashmir earthquake of October 8, 2005 and study of current seismic provisions for buildings in Pakistan", Bull. Earthq. Eng., 7(3), 681-699. https://doi.org/10.1007/s10518-009-9118-5.
  82. Rosti, A., Penna, A., Rota, M. and Magenes, G. (2016), "In-plane cyclic response of low-density AAC URM walls", Mater. Struct. Mater. Constr., 49(11), 4785-4798. https://doi.org/10.1617/s11527-016-0825-5.
  83. Saad, A.S., Ahmed, T.A. and Radwan, A.I. (2022), "In-plane lateral performance of AAC block walls reinforced with CFPR sheets", Build., 12(10), 1680. https://doi.org/10.3390/buildings12101680.
  84. Sadek, H. and Lissel, S. (2013), "Seismic performance of masonry walls with GFRP and geogrid bed joint reinforcement", Constr. Build. Mater., 41, 977-989. https://doi.org/10.1016/j.conbuildmat.2012.07.005.
  85. Sandoval, O.J., Takeuchi, C., Carrillo, J. and Barahona, B. (2021), "Performance of unreinforced masonry panels strengthened with mortar overlays reinforced with welded wire mesh and transverse connectors", Constr. Build. Mater., 267, 121054. https://doi.org/10.1016/j.conbuildmat.2020.121054.
  86. Santa-Maria, H. and Alcaino, P. (2011), "Repair of in-plane shear damaged masonry walls with external FRP", Constr. Build. Mater., 25(3), 1172-1180. https://doi.org/10.1016/j.conbuildmat.2010.09.030.
  87. Sarangapani, G., Venkatarama Reddy, B.V. and Jagadish, K.S. (2005), "Brick-mortar bond and masonry compressive strength", J. Mater. Civil Eng., 17(2), 229-237. https://doi.org/10.1061/(asce)0899-1561(2005)17:2(229).
  88. Shermi, C. and Dubey, R.N. (2017), "Study on out-of-plane behaviour of unreinforced masonry strengthened with welded wire mesh and mortar", Constr. Build. Mater., 143, 104-120. https://doi.org/10.1016/j.conbuildmat.2017.03.002.
  89. Shermi, C. and Dubey, R.N. (2018), "In-plane behaviour of unreinforced masonry panel strengthened with welded wire mesh and mortar", Constr. Build. Mater., 178, 195-203. https://doi.org/10.1016/j.conbuildmat.2018.04.081.
  90. Solla, M., Lorenzo, H., Rial, F.I. and Novo, A. (2012). "Ground-penetrating radar for the structural evaluation of masonry bridges: Results and interpretational tools", Constr. Build. Mater., 29, 458-465. https://doi.org/10.1016/j.conbuildmat.2011.10.001.
  91. Stratford, T., Pascale, G., Manfroni, O. and Bonfiglioli, B. (2004), "Shear strengthening masonry panels with sheet glass-fiber reinforced polymer", J. Compos. Constr., 8(5), 434-443. https://doi.org/10.1061/(asce)1090-0268(2004)8:5(434).
  92. Suraj, S. and Unnikrishnan, S. (2020), "Strengthening of concrete block masonry walls using steel wire mesh", Proceedings of SECON'19, Kerala, India, May.
  93. Syiemiong, H. and Marthong, C. (2020), "Flexural behavior of low strength masonry wallettes strengthened with welded wire mesh", Mater. Today: Proc., 43, 1774-1779. https://doi.org/10.1016/j.matpr.2020.10.452.
  94. Syiemiong, H. and Marthong, C. (2021), "The effect of mortar grade on the out-of-plane behaviour of low-strength masonry wall strengthened with welded wire mesh", Constr. Build. Mater., 279, 122393. https://doi.org/10.1016/j.conbuildmat.2021.122393.
  95. Tomazevic, M. (1999), Earthquake-Resistant Design of Masonry Buildings, World Scientific, Singapore.
  96. Tomazevic, M. and Klemenc, I. (1997), "Seismic behaviour of confined masonry walls", Earthq. Eng. Struct. Dyn., 26(10), 1059-1071. https://doi.org/10.1002/(SICI)10969845(199710)26:10<1059::AID-EQE694>3.0.CO,2-M.
  97. Triantafillou, T.C. (1998), "Strengthening of masonry structures using epoxy-bonded FRP laminates", J. Compos. Constr., 2(2), 96-104. https://doi.org/10.1061/(asce)1090-0268(1998)2:2(96).
  98. Tripathy, D. and Singhal, V. (2021), "Strengthening of weak masonry assemblages using wire reinforced cementitious matrix (WRCM) for shear and flexure loads", Constr. Build. Mater., 277, 122223. https://doi.org/10.1016/j.conbuildmat.2020.122223.
  99. Tripathy, D. and Singhal, V. (2023), "Behavior and design of masonry strengthened with steel-wire-reinforced cementitious matrix under flexure", J. Compos. Constr., 27(2), 04023012. https://doi.org/10.1061/jccof2.cceng-4032.
  100. Valluzzi, M.R., Tinazzi, D. and Modena, C. (2002), "Shear behavior of masonry panels strengthened by FRP laminates", Constr. Build. Mater., 16(7), 409-416. https://doi.org/10.1016/S0950-0618(02)00043-0.
  101. Vasconcelos, G. and Lourenco, P.B. (2009), "In-plane experimental behavior of stone masonry walls under cyclic loading", J. Struct. Eng., 135(10), 1269-1277. https://doi.org/10.1061/(asce)st.1943-541x.0000053.
  102. Warjri, T., Marbaniang, D.F. and Marthong, C. (2022), "In-plane behaviour of masonry walls embedding with steel welded wire mesh overlay with mortar", J. Struct. Integr. Maint., 7(3), 177-187. https://doi.org/10.1080/24705314.2022.2048241.
  103. Warlarpih, W. and Marthong, C. (2023), "Shear behavior of autoclaved aerated concrete (AAC) masonry walls with and without openings strengthened with welded wire mesh", Struct. Eng. Mech., 87(5), 487-498. https://doi.org/10.12989/sem.2023.87.5.487.
  104. Xu, C., Nehdi, M.L., Wang, K., Marani, A. and Zhang, L. (2023), "Seismic behavior of autoclaved aerated concrete masonry walls reinforced with glass-fiber geogrid", Struct., 58, 105367. https://doi.org/10.1016/j.istruc.2023.105367.
  105. Yadav, S., Damerji, H., Keco, R., Sieffert, Y., Crete, E., Vieux-Champagne, F., Garnier, P. and Malecot, Y. (2021), "Effects of horizontal seismic band on seismic response in masonry structure: Application of DIC technique", Progr. Disaster Sci., 10, 100149. https://doi.org/10.1016/j.pdisas.2021.100149.
  106. Yadav, S., Sieffert, Y., Vieux-Champagne, F., Malecot, Y., Hajmirbaba, M., Arleo, L., Crete, E. and Garnier, P. (2023), "Shake table tests on 1:2 reduced scale masonry house with the application of horizontal seismic bands", Eng. Struct., 283, 115897. https://doi.org/10.1016/j.engstruct.2023.115897.
  107. Yardim, Y. and Lalaj, O. (2016), "Shear strengthening of unreinforced masonry wall with different fiber reinforced mortar jacketing", Constr. Build. Mater., 102, 149-154. https://doi.org/10.1016/j.conbuildmat.2015.10.095.
  108. Zhou, D., Lei, Z. and Wang, J. (2013), "In-plane behavior of seismically damaged masonry walls repaired with external BFRP", Compos. Struct., 102, 9-19. https://doi.org/10.1016/j.compstruct.2013.01.031.