Acknowledgement
본 연구는 2021년도 산업통상자원부의 신재생에너지 핵심기술 개발 사업의 연구비 지원을 받아 수행된 연구임(No. 20213030040520).
References
- S. S. Kumar and V. Himabindu, "Hydrogen production by PEM water electrolysis - a review", Materials Science for Energy Technologies, Vol. 2, No. 3, 2019, pp. 442-454, doi: https://doi.org/10.1016/j.mset.2019.03.002.
- K. Zeng and D. Zhang, "Recent progress in alkaline water electrolysis for hydrogen production and applications", Progress in Energy and Combustion Science, Vol. 36, No. 3, 2010, pp. 307-326, doi: https://doi.org/10.1016/j.pecs.2009.11.002.
- S. S. Kumar, S. U. B. Ramakrishna, S. V. Krishna, K. Srilatha, B. R. Devi, and V. Himabindu, "Synthesis of titanium (IV) oxide composite membrane for hydrogen production through alkaline water electrolysis", South African Journal of Chemical Engineering, Vol. 25, 2018, pp. 54-61, doi: https://doi.org/10.1016/j.sajce.2017.12.004.
- S. S. Kumar, S. U. B. Ramakrishna, D. S. Reddy, D. Bhagawan, and V. Himabindu, "Synthesis of polysulfone and zirconium oxide coated asbestos composite separators for alkaline water electrolysis", Chemical Engineering & Process Techniques, Vol. 3, No. 1, 2017, pp. 1035. Retrieved from https://www.jscimedcentral.com/article-pdf/Chemical-Engineering-and-Process-Techniques/chemicalengineering-1-1035.pdf. 1035.pdf
- F. M. Sapountzi, J. M. Gracia, C. J. (Kees-Jan) Weststrate, H. O. A. Fredriksson, and J. W. (Hans) Niemantsverdriet, "Electrocatalysts for the generation of hydrogen, oxygen and synthesis gas", Progress in Energy and Combustion Science, Vol. 58, 2017, pp. 1-35, doi: https://doi.org/10.1016/j.pecs.2016.09.001.
- A. S. Arico, S. Siracusano, N. Briguglio, V. Baglio, A. Di Blasi, and V. Antonucci, "Polymer electrolyte membrane water electrolysis: status of technologies and potential applications in combination with renewable power sources", Journal of Applied Electrochemistry, Vol. 43, No. 2, 2013, pp. 107-118, doi: https://doi.org/10.1007/s10800-012-0490-5.
- M. Ni, M. K. H. Leung, and D. Y. C. Leung, "Technological development of hydrogen production by solid oxide electrolyzer cell (SOEC)", International Journal of Hydrogen Energy, Vol. 33, No. 9, 2008, pp. 2337-2354, doi: https://doi.org/10.1016/j.ijhydene.2008.02.048.
- M. A. Laguna-Bercero, "Recent advances in high temperature electrolysis using solid oxide fuel cells: a review", Journal of Power Sources, Vol. 203, 2012, pp. 4-16, doi: https://doi.org/10.1016/j.jpowsour.2011.12.019.
- A. Kadier, Y. Simayi, P. Abdeshahian, N. F. Azman, K. Chandrasekhar, and M. S. Kalil, "A comprehensive review of microbial electrolysis cells (MEC) reactor designs and configurations for sustainable hydrogen gas production", Alexandria Engineering Journal, Vol. 55, No. 1, 2016, pp. 427-443, doi: https://doi.org/10.1016/j.aej.2015.10.008.
- A. Kadier, M. S. Kalil, P. Abdeshahian, K. Chandrasekhar, A. Mohamed, N. F. Azman, W. Logrono, Y. Simayi, and A. A. Hamid, "Recent advances and emerging challenges in microbial electrolysis cells (MECs) for microbial production of hydrogen and value-added chemicals", Renewable and Sustainable Energy Reviews, Vol. 61, 2016, pp. 501-525, doi: https://doi.org/10.1016/j.rser.2016.04.017.
- I. Vincent, E. C. Lee, and H. M. Kim, "Highly cost-effective platinum-free anion exchange membrane electrolysis for large scale energy storage and hydrogen production", RSC Advances, Vol. 10, No. 61, 2020, pp. 37429-37438, doi: https://doi.org/10.1039/D0RA07190K.
- P. Zhang, J. Lee, and H. Lee, "Preparation and characterization of Pt-Ni nanocatalyst for anion exchange membrane in alkaline electrolysis by spontaneous reduction reaction", Journal of Hydrogen and New Energy, Vol. 33, No. 3, 2022, pp. 202-208, doi: https://doi.org/10.7316/KHNES.2022.33.3.202.
- M. J. Jang, M. S. Won, K. H. Lee, and S. M. Choi, "Optimization of operating parameters and components for water electrolysis using anion exchange membrane", Journal of the Korean institute of surface engineering, Vol. 49, No. 2, 2016, pp. 159-165, doi: https://doi.org/10.5695/JKISE.2016.49.2.159.
- V. Vij, S. Sultan, A. M. Harzandi, A. Meena, J. N. Tiwari, W. G. Lee, T. Yoon, and K. S. Kim, "Nickel-based electro-catalysts for energy-related applications: oxygen reduction, oxygen evolution, and hydrogen evolution reactions", ACS Catalysis, Vol. 7, No. 10, 2017, pp. 7196-7225, doi: https://doi.org/10.1021/acscatal.7b01800.
- S. C. Karthikeyan, S. Prabhakaran, R. S. Kumar, S. Ramakrishnan, A. R. Kim, D. H. Kim, and D. J. Yoo, "High-efficiency sustainable energy driven alkaline/seawater electrolysis using a novel hetero-structured non-noble bimetal telluride nanorods", Materials Today Nano, Vol. 24, 2023, pp. 100412, doi: https://doi.org/10.1016/j.mtnano.2023.100412.
- R. S. Kumar, K. Govindan, S. Ramakrishnan, A. R. Kim, J. S. Kim, and D. J. Yoo, "Fe3O4 nanorods decorated on polypyrrole/reduced graphene oxide for electrochemical detection of dopamine and photocatalytic degradation of acetaminophen", Applied Surface Science, Vol. 556, 2021, pp. 149765, doi: https://doi.org/10.1016/j.apsusc.2021.149765.
- J. Y. Lee, D. Yin, and S. Horiuchi, "Site and morphology controlled ZnO deposition on Pd catalyst prepared from Pd/PMMA thin film using UV lithography", Chemistry of Materials, Vol. 17, No. 22, 2005, pp. 5498-5503, doi: https://doi.org/10.1021/cm0506555.
- J. Y. Lee, Y. Liao, R. Nagahata, and S. Horiuchi, "Effect of metal nanoparticles on thermal stabilization of polymer/metal nanocomposites prepared by a one-step dry process", Polymer, Vol. 47, No. 23, 2006, pp. 7970-7979, doi: https://doi.org/10.1016/j.polymer.2006.09.034.
- R. S. Kumar, S. Prabhakaran, S. Ramakrishnan, S. C. Karthikeyan, A. R. Kim, D. H. Kim, and D. J. Yoo, "Developing outstanding bifunctional electrocatalysts for rechargeable Zn-air batteries using high-purity spinel-type ZnCo2Se4 nanoparticles", Small, Vol. 19, No. 20, 2023, pp. 2207096, doi: https://doi.org/10.1002/smll.202207096.