DOI QR코드

DOI QR Code

Thirty-two-tupling frequency millimeter-wave generation based on eight Mach-Zehnder modulators connected in parallel

  • Xinqiao Chen (School of Information and Communication Engineering, Communication University of China) ;
  • Siyuan Dai (School of Information and Communication Engineering, Communication University of China) ;
  • Zhihan Li (School of Information and Communication Engineering, Communication University of China) ;
  • Wenyao Ba (School of Information and Communication Engineering, Communication University of China) ;
  • Xu Chen (School of Information and Communication Engineering, Communication University of China)
  • 투고 : 2022.12.07
  • 심사 : 2023.02.27
  • 발행 : 2024.04.20

초록

A new method is proposed to generate a 32-tupling frequency millimeter wave (MMW) with eight Mach-Zehnder modulators (MZMs) connected in parallel. Theoretical analyses and simulation experiments are conducted. The optical sideband suppression ratio (OSSR) of the obtained ±16th order optical sidebands are 61.54 dB and 61.42 dB, and the radio frequency spurious suppression ratios (RFSSRs) of the generated 32-tupling frequency MMW are 55.52 dB and 55.27 dB based on the theoretical analysis and simulation experiments, respectively; these outcomes verified the feasibility of the new method. The main parameters used to affect the stability of the generated signal are the modulation index and extinction ratio of MZM. Their effects on the OSSR and RFSSR of the generated signals are investigated when they deviate from their designed values. Compared with the other proposed methods for the generation of 32-tupling frequency MMW by MZM, our method has the best spectral purity and stability, and it is expected to have important MMW over fiber applications.

키워드

참고문헌

  1. G. Jaro and T. Berceli, A new high-efficiency optical-microwave mixing approach, J. Lightwave Technol. 21 (2003), no. 12, 3078-3084.
  2. S. H. Fan, C. Liu, and G. K. Chang, Heterodyne optical carrier suppression for millimeter-wave-over-fiber systems, J. Lightwave Technol. 31 (2013), no. 19, 3210-3216.
  3. H. Y. Chen, Y. C. Chi, C. Y. Lin, C. T. Tsai, and G. R. Lin, Four-wave-mixing suppression of master-to-slave injection-locked two-wavelength FPLD pair for MMW-PON, J. Lightwave Technol. 34 (2016), no. 20, 4810-4818.
  4. Y. J. Shang, Z. J. Feng, C. Q. Cao, Z. Q. Huang, Z. Y. Wu, X. K. Xu, and J. Geng, A using remodulation filterless scheme of generating frequency 32-tupling millimeter-wave based on two DPMZMs, Opt. Laser Technol. 148 (2022), 107793.
  5. X. Chen, Z. Li, X. Liu, W. Ba, and S. Dai, Research on 32-tupling frequency terahertz wave generation based on Mach-Zehnder modulators cascaded, Optik 270 (2022), 170027.
  6. H. Chen, T. Ning, J. Li, W. Jian, L. Pei, C. Li, and C. Zhang, Millimeter-and terahertz-waves generation with photonic frequency 32-tupling based on tunable lasers, Optim. Eng. 54 (2015), no. 2, 026106.
  7. K. Jeyapiriya, G. Gayathri, and T. Sivasakthi, A filter less method of generating frequency 32-Tupling millimeter-wave using external modulators for green communications and its applications, J. Green Eng. 10 (2020), 11665-11674.
  8. Z. Zhu, S. Zhao, X. Li, K. Qu, and T. Lin, Filter-free photonic frequency sextupler operated over a wide range of modulation index, Opt. Laser Technol. 90 (2017), 144-148.
  9. A. B. Dar, F. Ahmad, and R. K. Jha, Filterless optical millimeter-wave generation using cascaded-parallel Mach-Zehnder modulators with tunable frequency multiplication factor, Opt. Quantum Electron. 53 (2021), no. 1, 1-15.
  10. A. B. Dar and F. Ahmad, Filterless 16-tupling photonic millimeter-wave generation with Mach-Zehnder modulators using remodulation, Appl. Optics 59 (2020), no. 20, 6018-6023.
  11. G. Shanmugapriya, Frequency 16-tupled optical millimeter wave generation using dual cascaded MZMs and 2.5 Gbps RoF transmission, Optik 140 (2017), 338-346.
  12. H. Zhou, C. Fei, Y. Zeng, Y. Tan, and M. Chen, A ROF system based on 18-tuple frequency millimeter wave generation using external modulator and SOA, Opt. Fiber Technol. 61 (2021), 102402.
  13. X. Li, S. D. Zhao, Z. H. Zhu, B. Gong, X. C. Chu, Y. J. Li, J. Zhao, and Y. Liu, An optical millimeter-wave generation scheme based on two parallel dual-parallel Mach-Zehnder modulators and polarization multiplexing, J. Mod. Opt. 62 (2015), no. 18, 1502-1509.
  14. X. Yin, A. Wen, Y. Chen, and T. Wang, Studies in an optical millimeter-wave generation scheme via two parallel dual-parallel Mach-Zehnder modulators, J. Mod. Opt. 58 (2011), no. 8, 665-673.
  15. Y. Chen, A. Wen, J. Guo, and Y. Wang, A novel optical mm-wave generation scheme based on three parallel Mach-Zehnder modulators, Opt. Commun. 284 (2011), no. 5, 1159-1169.
  16. M. Hasan and T. J. Hall, A photonic frequency octo-tupler with reduced RF drive power and extended spurious sideband suppression, Opt. Laser Technol. 81 (2016), 115-121.
  17. Z. Zhu, S. Zhao, Q. Tan, D. Liang, X. Li, and K. Qu, Photonically assisted microwave signal generation based on two cascaded polarization modulators with a tunable multiplication factor, IEEE Trans. Microw. Theory Tech. 64 (2016), no. 11, 3748-3756.
  18. Z. Zhu, S. Zhao, X. Li, K. Qu, and T. Lin, Photonic generation of frequency-sextupled microwave signal based on dual-polarization modulation without an optical filter, Opt. Laser Technol. 87 (2017), 1-6.
  19. Z. Zhu, S. Zhao, W. Zheng, W. Wang, and B. Lin, Filterless frequency 12-tupling optical millimeter-wave generation using two cascaded dual-parallel Mach-Zehnder modulators, Appl. Optics 54 (2015), no. 32, 9432-9440.
  20. M. Mohmoud, X. Zhang, B. Hraimel, and K. Wu, Efficient photonic generation of millimeter-waves using optical frequency multiplication in radio-over-fiber systems, (Microwave Photonics, 2007 International Topical Meeting on, Montreal, Canada), 2007, pp. 179-182.
  21. P. Rabiei, J. Ma, S. Khan, J. Chiles, and S. Fathpour, Heterogeneous lithium niobate photonics on silicon substrates, Opt. Express 21 (2013), 25573-25581.
  22. S. Dogru and N. Dagli, 0.77-V drive voltage electro-optic modulator with bandwidth exceeding 67 GHz, Opt. Lett. 39 (2014), no. 20, 6074-6077.