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Abstract

Air-writing recognition is relevant in areas such as natural human–computer

interaction, augmented reality, and virtual reality. A trajectory is the most

natural way to represent air writing. We analyze the recognition accuracy of

words written in air considering five features, namely, writing direction, cur-

vature, trajectory, orthocenter, and ellipsoid, as well as different parameters

of a hidden Markov model classifier. Experiments were performed on two

representative datasets, whose sample trajectories were collected using a

Leap Motion Controller from a fingertip performing air writing. Dataset D1

contains 840 English words from 21 classes, and dataset D2 contains 1600

English words from 40 classes. A genetic algorithm was combined with a hid-

den Markov model classifier to obtain the best subset of features. Combination

ftrajectory, orthocenter, writing direction, curvatureg provided the best feature

set, achieving recognition accuracies on datasets D1 and D2 of 98.81% and

83.58%, respectively.
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1 | INTRODUCTION

Three-dimensional (3D) handwriting or air writing con-
sists of writing characters, digits, words, or texts in the air
by moving a finger or wearable device. The recognition of
air writing is an important and interesting effort to
enhance natural human–computer interactions [1], aug-
mented reality, and virtual reality [2]. In addition, this
technology may reduce the size of upcoming keyboards
and TV controllers [3] because users would not need to
type on a keyboard or write on a trackpad/touchscreen
[4]. Moreover, air-writing analysis can be useful in appli-
cations related to the recognition, interpretation, and

identification of conventional handwriting. Such applica-
tions include handwriting learning tools, writer authenti-
cation, and signature verification [5–9].

Popular devices for detecting air writing include
depth sensors (e.g., Microsoft Kinect [10], Leap
Motion controller—LMC [11], and Intel RealSense 3D
depth camera), web cameras, WiFi inertial sensors
(e.g., accelerometer, gyroscope, magnetometer, wireless
inertial measurement unit incorporating accelerometer,
gyroscope, and magnetometer [12]), and radars [13–15].
A comprehensive review of the applications and various
features (e.g., accuracy, precision, field of vision, robust-
ness, manufacturer, technology, captor range, cost, and
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availability) of depth sensors is available in [16]. A device
based on inertial sensors should be worn or held in hand
while the users move their fingers over the viewing field
of the depth sensors or cameras. Recently developed
smart bands [17] are user-friendly devices for air-writing.

Hand gestures and trajectory identification are the
two main principles of air-writing recognition. For
instance, camera-based sensing allows gesture identifica-
tion from a sequence of images followed by feature
extraction [18]. Using a Kinect sensor, a sequence of
depth images can be obtained to track a fingertip motion
[19–23]. An LMC tracks the 3D locations of fingertips
and joints with 0.01 mm accuracy using an application
programming interface [24–28]. Misra and others [29]
placed a red marker on an index fingertip for air-writing
recognition. Among inertial sensors, accelerometers,
gyroscopes, and magnetometers provide accelerations,
angular velocities, and magnetic signals, respectively,
allowing the estimation of hand trajectories [3,30–32].
The Kinect sensor is suitable for tracking whole-body
motion, whereas the LMC accurately estimates fingertip
motion. Inertial sensors can be more accurate than depth
sensors. Nevertheless, the accurate fingertip motion
detection and reliable application programming interface
of LMC render it the best sensor for capturing air-
writing data.

Computer-based handwriting analysis can be divided
into three categories: (i) Air writing, (ii) offline two-
dimensional (2D) handwriting (data stored as grayscale
images [5,6]), and (iii) online 2D handwriting (data
stored as 2D spatiotemporal sequence ððxðtÞ, yðtÞÞ or
ðxðtÞ, yðtÞ, f ðtÞÞ, where xðtÞ, yðtÞ are the spatial coordi-
nates, and f ðtÞ is the pen tip force/pressure on the track-
pad/touchscreen at time t [6,33]). Existing air-writing
data are available in an online format. Thus, their analy-
sis is similar to that of online 2D handwriting but has the
following major differences: (i) The start and end posi-
tions are unclear; (ii) nonaligned texts are problematic;
and (iii) words and text lines have no gaps (i.e., all words
belong to a single stroke).

Air-writing recognition can be closely related to off-
line and online 2D handwriting recognition (with data
extended to three dimensions), sound recognition (from
spatiotemporal data), and gesture recognition (identifica-
tion of hand or fingertip motions from an image
sequence). Several techniques available for the recogni-
tion of 2D handwriting, sounds, and gestures have been
extended to air-writing recognition. The four main stages
of handwriting analysis include (i) preprocessing [34]
(e.g., rotation, size and slant corrections, interpolation,
smoothing, resampling, Zernike moment calculation),
(ii) segmentation [27,33], (iii) feature extraction [33,34]
(e.g., vertical position, curvature, hat, aspect, curliness,

linearity, slope, ascender/descender, context map, nor-
malized coordinate, inflection point, stroke crossing,
velocity, directional feature, moment, number of strokes,
rendered bitmap, orientation map), and (iv) recognition
[33,34]. Recognition methods include the interpretation
of time sequences using machine learning models, such
as hidden Markov models (HMMs), time-delay neural
networks, recurrent neural networks (RNNs), and long
short-term memory (LSTM) networks.

Improving 3D air-writing recognition requires fast
processing with high accuracy on low-memory devices.
Unlike conventional 2D handwriting, 3D air writing
shows no gaps between words and text lines [28]. Seg-
mentation of text lines and words can improve accuracy
and accelerate recognition. Moreover, 3D air-writing
styles vary across writers, who should be trained using
well-defined rules (e.g., scripts) for air writing. Two com-
mon problems of 3D air writing (but rare in 2D handwrit-
ing) are (i) unknown prior knowledge about the start and
end positions (even if a common word is written by two
different writers or a word is written twice by the same
writer) and (ii) nonaligned trajectories given fluctuations
in fingertip motion. High-quality trajectories can be
recorded by writers skilled in air-writing scripts.
Although standards for sign language scripts are avail-
able, to the best of our knowledge, no standard for air-
writing scripts using the LMC is available. Moreover, the
accuracy and computational speed of recognition from a
trajectory depend on the selection of features and classifi-
cation methods. Below, we discuss related work on air-
writing recognition using LMC data.

Vikram and others [24] used the LMC to recognize
air-written English characters and words. They evaluated
the recognition speed and accuracy on spatiotemporal
sequences (xðtÞ, yðtÞ, zðtÞ). Dynamic time wrapping was
used for character and word recognition.

Xu and others [25] recognized 3755 classes of air-
written Chinese characters. They proposed a synthetic
method to generate dozens of artificial instances by
observing a single instance. The artificial instances sup-
ported the training of robust classifiers. Linear discrimi-
nant analysis was used for dimensionality reduction, and
a compact modified quadratic discriminant function was
used for character classification.

Aggarwal and others [26] combined word segmenta-
tion and HMM for English sentence recognition. They
collected an air-writing dataset (D1) containing 320 sen-
tences from 10 inexperienced participants writing in the
LMC field of view. The words belonged to a set of
21 labeled words, and each word was repeated four times
per participant, collecting 840 air-written words. The
length of the sentences ranged from two to four words,
and the number of characters per word ranged from two

VERMA ET AL. 251



to seven. A partial-differentiation-based technique was
used for word segmentation, and the segmented words
were recognized by an HMM classifier.

Kumar and others [27] constructed an air-writing
dataset (D2) containing 560 sentences from 10 partici-
pants. Each word was drawn 40 times, collecting 1600
words. The sentence length ranged from two to four
words, and the number of characters per word ranged
from two to eight. A heuristic analysis of the stroke
length between two successive words was used for seg-
mentation. HMM and bidirectional LSTM network classi-
fiers were used for recognition.

Kumar and others [28] investigated various features
to improve the recognition accuracy on dataset D1. Large
gaps between the end and start of the lines were used for
segmentation. Dynamic and simple features were used by
an HMM classifier for recognition. Similarly, Roy
and others [35] obtained an average recognition accuracy
of 41.7% on a dataset containing 6250 sentences.

The highest accuracy obtained from LMC data for 3D
air-written words was 92.7% [28]. Muratha and Shin [21]
obtained recognition accuracies of 98% for characters and
95% for digits. Vikram and others [24] focused on the
runtime for similarity search of unknown words in two
datasets.

The suitability of LMC for air writing motivates the
improvement of recognition accuracy on collected data-
sets. In this study, we focused on improving the recogni-
tion accuracy of air-writing data [4,27,28] collected from
the LMC by combining representative features. The most
successful classifier for spatiotemporal data, an HMM
[36], was applied to features extracted from datasets D1

[28] and D2 [27] for 3D air-written word classification.
The writing direction (wdir), curvature [34,37,38], and
3D point clouds establishing the trajectory (tr) [27] are
common features for online handwriting analysis. In
addition, the orthocenters (OC) [39] and ellipsoids [40]
have recently been used to recognize 3D geometries.

We investigated the accuracy of word recognition using
trajectories from datasets D1 and D2 considering various
combinations of five features, S¼ fwdir, curvature, tr,
OC, ellipsoidg, and HMM parameter settings. We aimed
to find the best feature subset of S and HMM parameters
that maximize the word recognition accuracy. Determin-
ing the best subset is difficult because there are 2jSj �1
subsets, where jSj is the set cardinality. Thus, a genetic
algorithm (GA) was combined with an HMM classifier to
obtain the best feature subset. Tenfold cross-validation
was used to compute the accuracy, which was also ana-
lyzed according to the selection of the HMM parameters.

The remainder of this paper is organized as follows.
Section 2 provides the theory of preprocessing, feature

extraction, HMM, GA, and integration of GA with
HMM to select the best features. Experiments, results,
and analyses are reported in Section 3 followed by a
discussion in Section 4. Finally, conclusions are drawn
in Section 5.

2 | METHODS

Five features, namely, wdir, curvature, tr, OC, and ellip-
soid with dimensions 3, 11, 3, 3, and 24, respectively,
were extracted from the aligned (preprocessed) sample
trajectories of datasets D1 and D2. A GA was applied for
feature selection, and the selected features were fed into
the HMM for word recognition. In this section, we detail
each phase of the air-writing recognition method.

2.1 | Trajectory alignment

Preprocessing techniques, such as uniform sampling
rate and alignment, help reduce errors owing to the
quality of trajectory data [27,28]. Different sampling
rates [27,28], writing styles across persons [27], and
word alignments by a person at different times or
across persons [27] are the main factors that determine
the data quality. Trajectory alignment is the main
quality issue in datasets D1 and D2. We use the tech-
nique reported in [27,28] for trajectory alignment, which
is an extension of slant correction for 2D words [34,41].
This technique combines regression [42,43], translation
[44], and rotation [44].

Regression is used to determine the mainline of the
trajectory. Orthogonal regression and principal compo-
nent analysis (as available at https://in.mathworks.com/
help/stats/fitting-an-orthogonal-regression-using-principal-
components-analysis.html) are used to obtain the regres-
sion line, where the line direction is provided by the
eigenvector corresponding to the largest eigenvalue of
the covariance matrix of the trajectory tr. Let
P1ðx1, y1, z1Þ and P2ðx2, y2, z2Þ be the initial point and an
arbitrary fixed point (other than the initial point) on the
regression line, respectively. The aligned trajectory (Atr)
is obtained as T3 ∗T2 ∗T1ðtrÞ, where

T1 ¼

1 0 0 �x1
0 1 0 �y1
0 0 1 �z1
0 0 0 1

2
6664

3
7775, T2 ¼

uffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2þ v2

p vffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2þ v2

p 0 0

�vffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2þ v2

p uffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2þ v2

p 0 0

0 0 1 0

0 0 0 1

2
6666664

3
7777775,
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T3 ¼

wffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2þ v2þw2

p 0
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2þ v2
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2þ v2þw2
p 0

0 1 0 0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2þ v2

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2þ v2þw2

p 0
wffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2þ v2þw2
p 0

0 0 0 1

2
66666664

3
77777775
,

and ðx2�x1, y2�y1, z2� z1Þ¼ ðu, v, wÞ. T1 is a transla-
tion matrix [44], while T2 and T3 are rotation matrices
[44], and matrix product T3 ∗T2 ∗T1 provides the aligned
trajectories along the Z axis.

2.2 | Feature extraction

Features wdir and curvature provide angular and geo-
metrical information, respectively, of 2D handwriting
samples [27,34,37]. Kumar and others [27,28] extended
the formulas of wdir and curvature to air-writing sam-
ples. Let Pðxðt�1Þ, yðt�1Þ, zðt�1ÞÞ¼Pðpx , py, pzÞ,
QðxðtÞ, yðtÞ, zðtÞÞ¼Qðqx , qy, qzÞ, and Rðxðtþ1Þ, yðtþ
1Þ, zðtþ1ÞÞ¼Rðrx , ry, rzÞ be three neighboring points
along a trajectory. The direction cosines of the tangent to
curve PQR define wdir ðα, β, γÞ with three dimensions at
point Q, where

cosineðαÞ¼ dx

jd!j
, cosineðβÞ¼ dy

jd!j
, cosineðγÞ¼ dz

jd!j
,

d
!¼ < rx �px ,ry�py,rz�pz > ¼ < dx ,dy,dz > , ð1Þ

jd!j¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2x þd2y þd2z

q
:

The curvature of segment PQR at point Q is determined
by five subfeatures that are defined by a unique circum-
circle of non-collinear points P,Q, and R, such that the
curvature is on plane Δ defined by those points. Center
(C) has dimension 3, radius η has dimension 1 of the cir-
cumcircle, two vectors CM

��!
and CN

�!
have dimension 3,

where M and N are the midpoints of PQ
�!

and QR
�!

, respec-
tively, and the exterior of ∠PCR has dimension 1. Overall,
the curvature has dimension 11. Note that (i) ∠PCR is
measured in radians and has a value above π rad; (ii) CM

��!
and CN

�!
are bisectors perpendicular to PQ

�!
and QR

�!
,

respectively; and (iii) C is defined as

OC
�!¼ sinð2∠PÞOP�!þ sinð2∠QÞOQ�!þ sinð2∠RÞOR�!

sinð2∠PÞþ sinð2∠QÞþ sinð2∠RÞ , ð2Þ

where ∠RPQ¼∠P, ∠PQR¼∠Q, and ∠PRQ¼∠R, which
are measured in radians and have values below π rad,
and O is the trajectory origin.

Feature tr is determined by 3D point clouds [27] given
by the position vectors of the trajectory corresponding to
the movement of the finger along the X ,Y , and Z axes,
that is, ðxðtÞ, yðtÞ, zðtÞÞ. The dimension of tr is 3.

Remondino [39] used OC to reconstruct 3D images of
the human body. OC A of the triangle constructed by
points P, Q, and R is computed as follows:

OA
�!¼ tanð∠PÞOP�!þ tanð∠QÞOQ�!þ tanð∠RÞOR�!

tanð∠PÞþ tanð∠QÞþ tanð∠RÞ : ð3Þ

Malyugina and others [40] considered an ellipsoid for
the magnetometer calibration. The ellipsoid is a quadric
surface area that can be represented as

Ax2þBy2þCz2þ 2Dxyþ2Exzþ2Fyzþ
2Gxþ2Hyþ2Izþ J ¼ 0:

ð4Þ

Most ellipsoid fitting methods are based on the least-
squares method [45], [46], [47], where the fitness func-
tion is defined in terms of (i) geometric error,
(ii) algebraic error, or (iii) approximate mean squared dis-
tance [48]. Methods using algebraic errors achieve effi-
cient computation but lack geometric understanding
[46]. Nevertheless, in [40], the algebraic method of [47]
was shown to outperform other methods. Hence, we fit
ellipsoids for 16 cloud points of word sequences using the
algebraic method [47] subject to constraint AþBþC¼ 3.
Therefore, nine ellipsoid parameters were estimated and
used to estimate the center with dimension 3, radii with
dimension 3, and radius directions with dimension
9. The resulting ellipsoid feature has dimension 24.

2.3 | HMM

An HMM is a sequential state machine used for modeling
a wide range of time-series data [18,32,41,49,50]. In this
section, we describe the general architecture of an HMM,
its training algorithm, and the algorithm for classifying
word labels.

The architecture of an HMM depends on the type of
observation or feature data. If the features are discrete,
the HMM is described by N hidden states
ωt � f1, 2, …, Ng at time t, M visible states
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vt � f1, 2, …, Mg at time t, N�N transition probabilities
aij (probability of moving from hidden state i at time t –
ωt ¼ i – to hidden state j at time tþ1 – ωtþ1 ¼ j), N�M
emission probabilities bik (probability of observing visible
state k at time t – vt ¼ k – when the hidden state of the
HMM at time t is i ðωt ¼ iÞ), and N initial state probabili-
ties πi of ω1 being i. If the features are continuous, the
emission probabilities are replaced by the observation
probabilities. Observation probabilities biðxÞ of the fea-
tures being x for hidden state i ðωt ¼ i at time t are mod-
eled as follows:

biðxÞ¼
XM
m¼1

cimΠ x, μim, timð Þ, i¼ 1, 2, …, N , ð5Þ

where x is the modeled vector of dimension l, cim is the
coefficient for mixture m in state ωt ¼ i with constraints

XM
m¼1

cim ¼ 1, i¼ 1, 2, …, N , ð6Þ

cim ≥ 0, i¼ 1, 2, …, N , m¼ 1, 2, …, M, ð7Þ

Π is any log-concave or elliptically symmetric proba-
bility density function, μim is the mean vector of dimen-
sion l and tim is the covariance matrix of dimension l� l
of mixture m in state ωt ¼ i. If X ¼ðx1, x2, …, xTÞ is an
observation sequence, λ¼ðfaijgi,j, fbiðxÞgi, fπigiÞ is given
by the HMM, and Ω¼ðω1, ω2, …, ωTÞ is a sequence of
hidden states of λ. Then, the likelihood of observation
sequence X is computed as follows:

PðX jλÞ¼
X
Ω

πω1bω1ðx1Þ
YT
t¼2

aωt�1ωt bωtðxtÞ
!
: ð8Þ

An alternative to computing the likelihood of obser-
vation sequence X is given by

PðX jλÞ¼ max
Ω

πω1bω1ðx1Þ
YT
t¼2

aωt�1ωt bωtðxtÞ
!
: ð9Þ

Because we consider continuous time-series features,
a continuous-density HMM is adopted. A Gaussian
density is considered for each mixture, establishing a
Gaussian mixture model. Different HMMs are
trained for different words/labels. Parameters
ðaij, cim, μim, tim, πiÞ of the HMM (λw) for word w are
estimated for different values of N and M such that

likelihood PðX jλwÞ is maximized with respect to the
parameters. Parameter estimation comprises three main
steps: (i) Initialization, (ii) re-estimation, and (iii) termi-
nation. Training of HMM λw given N , M, and X (X is a
feature sequence corresponding to the word w) can be
summarized as follows:

1. Use uniform segmentation for parameter
initialization.

2. Use Viterbi algorithm [36,50] to estimate the best state
sequence, Ω¼ðω1, ω2, …, ωTÞ. This sequence helps to
calculate likelihood PðX jλwÞ.

3. Use Baum–Welch method [36,50] for re-estimation of
model parameters. Baum–Welch re-estimation is for-
mulated by maximizing Baum’s auxiliary function
[36]. The re-estimation formulae for aij, πi, cim, μim,
and tim are given by

πi ¼ expected number of times in state i at time t¼ 1,

ð10Þ

�aij ¼ expected number of transitions from state i to j
expected number of transitions from state i

,

ð11Þ

cim ¼
expected number of times the system is in state i

using the mth mixture component
expected number of times the system is in state i

,

¼
PT

t¼1γtði,mÞPM
m¼1

PT
t¼1γtði,mÞ , ð12Þ

μim ¼
PT

t¼1γtði,mÞxtPT
t¼1γtði,mÞ , ð13Þ

tim ¼
PT

t¼1γtði,mÞðxt�μimÞðxt�μimÞ0PT
t¼1γtði,mÞ , ð14Þ

where γtði,mÞ is the probability that xt has been gen-
erated by the m-th mixture component in state i at
time t.

4. Steps 2 and 3 are repeated until convergence of likeli-
hood PðX jλÞ.

Our training dataset contains many examples of a
given word w. Therefore, the estimated HMM (λw) is
updated using all examples of word w in the training
dataset. This is applied to train all the HMMs. An
unknown feature sequence X is recognized by computing
the likelihood of all the HMMs. Sequence X is recognized
as w∗ as follows [36,50]:
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w∗ ¼ argmax
w �W

fPðX jλwÞg: ð15Þ

2.4 | Feature selection

Every feature contributes to the computational cost and
accuracy of a recognition system. If we select few fea-
tures, the computational cost decreases at the expense of
accuracy. Therefore, an optimal subset must be selected
from a set of feasible features [51]. Five feasible features
are used in our method. The possible feature subsets are
S1 ¼ {wdir}, S2 ¼ {OC}, S3 ¼ {tr}, S4 ¼ {curvature}, S5 ¼
{ellipsoid}, S6 ¼{OC, wdir}, S7 ¼ {tr, wdir}, S8 ¼ {tr, OC},
S9 ¼ {curvature, wdir}, S10 ¼ {tr, curvature}, S11 ¼ {OC,
curvature}, S12 ¼ {wdir, ellipsoid}, S13 ¼ {tr, ellipsoid},
S14 ¼ {OC, ellipsoid}, S15 ¼ {curvature, ellipsoid}, S16 ¼
{tr, OC, wdir}, S17 ¼ {tr, OC, curvature}, S18 ¼ {curvature,
wdir, OC}, S19 ¼ {tr, wdir, curvature}, S20 ¼ {OC, wdir,
ellipsoid}, S21 ¼ {ellipsoid, tr, wdir}, S22 ¼ {tr, OC, ellip-
soid}, S23 ¼ {tr, curvature, ellipsoid}, S24 ¼ {wdir, curva-
ture, ellipsoid}, S25 ¼ {OC, curvature ellipsoid}, S26 ¼ {tr,
OC, wdir, curvature}, S27 ¼ {OC, wdir, tr, ellipsoid}, S28 ¼
{tr, OC, wdir, ellipsoid}, S29 ¼ {tr, ellipsoid, curvature,
wdir}, S30 ¼ {OC, wdir, curvature, ellipsoid}, and S31= {tr,
OC, wdir, curvature, ellipsoid}.

We aimed to select the best combination of features
for air-writing recognition. This combination was
obtained using a GA [51,52]. The use of a GA for feature
selection is described in Algorithm 1. The GA was
applied to 35 and 10 randomly selected samples
ðD0, M, NÞ from datasets D1 and D2, respectively.
Algorithm 1 selected feature combinations S16,S26, and
S31 for D1 with frequencies of 10, 16, and 9, respectively,
and S16 and S26 for D2 with frequencies of 1 and
9, respectively.

3 | EXPERIMENTS, RESULTS, AND
ANALYSES

The HMMs were constructed for the recognition of air-
written words from samples in datasets D1 and D2. The
selected sets of features (S16, S26, S31) by the GA were
used in the HMMs. The 10-fold cross-validation accuracy
of the recognized words was used to evaluate the perfor-
mance of each HMM for the datasets and feature subsets
(D1, S16, D1, S26, D1, S31, and D2, S26). Cross-validation
was performed on HMM parameters N � f1, 2, 3, 4g and
M � f2, 4, 8, …, 256g.

The 10-fold cross-validation can be summarized as
follows. Divide the given dataset into 10 disjoint subsets.
Use nine subsets for training, and the remaining subset

for validation. Repeat this process until exploring all the
combinations of the 10 disjoint subsets. All the combina-
tions of N and M with the 10 disjoint subsets provided
4�8�10¼ 320 validation accuracy values. We used
M�accuracy,M�opt,N�accuracy, and N�opt given
by

M�accuracy¼ max
M

faccuracyg, ð16Þ

M�opt¼ argmax
M

faccuracyg, ð17Þ

N�accuracy¼ max
N

faccuracyg, ð18Þ

N�opt¼ argmax
N

faccuracyg ð19Þ

to search for the values of M and N providing the highest
accuracy. All the experiments were implemented on the
64-bit MathWorks MATLAB R2016b software.

The values of M�accuracy and M�opt and those of
N�accuracy and N�opt are listed in Tables 1 and 2,
respectively, for datasets D1 and D2. The best values
for (M�accuracy, N�accuracy) are (97.62%, 972.6%),
(98.81%, 98.81%), (86.9%, 86.9%), and (83.58%, 83.58%) for
(D1, S16), (D1, S26), (D1, S31), and (D2, S26), respectively.
The corresponding values for (M�opt,N�opt) are
(128, 4), (128, 2), (256, 3), and (64, 4). The best accuracy
for D1 of 98.81% corresponds to feature subset S26. A
detailed analysis of D1 with S26 is shown as a confusion
matrix in Figure 1 for ðM, NÞ¼ ð128, 2Þ. Word max is the
only misclassified class, being incorrectly recognized as
word navy, possibly owing to the misclassification of let-
ter m as n and x as vy.

3.1 | Error analysis on ðD1,S26Þ for ðM,NÞ
of (64, 2) and (128, 2)

Table 3 depicts three trajectories of dataset D1 that were
incorrectly recognized when using HMM parameters
ðM, NÞ¼ ð64, 2Þ but correctly recognized when using
ðM, NÞ¼ ð128, 2Þ. ðM, NÞ of ð64, 2Þ corresponds to the
second-best recognition accuracy (97.62% in Tables 1 and
2). In the first row of Table 3, the word heap is incorrectly
recognized as the word has. Letters ea are recognized as
letter a, and letter p is recognized as letter s owing to
their similar trajectories. In the second row, the word
conquer is wrongly recognized as the word dress, owing
to confusion in the writing style in a single stroke. In
[28], the word access was incorrectly recognized as the
word dress. However, in our method, the words conquer
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TAB L E 1 Values of (M�accuracy,M�opt) in 10-fold cross-validation

N 1 2 3 4

Data tuple: (D1,S16)

10th fold 96.43, 256 95.24, 128 92.86, {8, 32, 64} 92.86, {8, 32, 64}

9th fold 94.05, 128 96.43, 32 91.67, {8, 16, 256} 91.67, {8, 16, 256}

8th fold 96.43, 256 95.24, {64, 128} 96.43, 256 94.05, 32

7th fold 90.48, 64 88.10, {32, 64, 256} 89.29, {64, 128} 89.29, {64, 128}

6th fold 95.24, {64, 128} 96.43, {128, 256} 95.24, {64, 128} 97.62, 128

5th fold 90.48, 256 85.71, 64 89.29, 32 88.10, {64, 128}

4th fold 92.86, {64, 128} 95.24, 64 91.67, {8, 32, 64} 94.05, 256

3rd fold 94.05, 64 92.86, 128 91.67, {64, 256} 91.67, {64, 256}

2nd fold 92.86, {32, 64, 128, 256} 92.86, {32, 64, 128, 256} 92.86, {32, 64, 128, 256} 92.67, 32

1st fold 85.71, 128 84.52, {64, 128, 256} 84.52, {64, 128, 256} 84.52, {64, 128, 256}

Data tuple: (D1,S26)

10th fold 95.24, {32, 64, 128, 256} 95.24, {32, 64, 128, 256} 94.05, 64 95.24, {32, 64, 128, 256}

9th fold 94.05, {32, 64, 256} 97.62, 64 94.05, {32, 64, 256} 96.43, 32

8th fold 95.24, 64 98.81, 128 96.43, {32, 128, 256} 96.43, {32, 128, 256}

7th fold 92.86, {32, 64, 256} 92.86, {32, 64, 256} 91.67, 128 91.67, 128

6th fold 97.62, {64, 128, 256} 97.62, {64, 128, 256} 96.43, {64, 128} 96.43, {64, 128}

5th fold 90.48, {64, 128} 91.67, 256 89.29, {32, 128} 90.48, {64, 128}

4th fold 94.05, 64 96.43, {64, 128} 92.86, {16, 32} 91.67, 128

3rd fold 92.50, 32 96.43, 128 90.10, 64 88.20, 32

2nd fold 94.05, 64 96.43, {64, 128} 94.05, 64 93.10, 128

1st fold 88.38, 64 94.34, 128 95.7, 128 89.29, 32

Data tuple: (D1,S31)

10th fold 78.57, 256 77.38, {64, 128} 77.38, {64, 128} 78.9, 256

9th fold 82.05, 256 82.86, 256 75.40, 32 77.62, 64

8th fold 86.43, 128 85.04, 256 86.9, 128 81.67, 256

7th fold 76.19, 64 84.05, 64 85.4, 128 86.43, 256

6th fold 75.24, 128 76.43, 128 85.24, 64 86.62, {128, 256}

5th fold 80.48, 128 85.70, 64 83.29, 64 81.67, {128, 256}

4th fold 72.86, 64 75.24, 128 83.37, 64 86.43, {64, 128, 256}

3rd fold 84.05, 64 82.86, 128 81.67, 64 86.43, 64

2nd fold 82.86, {64, 128} 79.86, 64 76.43, 64 85.86, 256

1st fold 85.71, 128 84.52, {64, 256} 86.90, 256 84.52, {64, 256}

Data tuple: (D2, S26)

10th fold 68.57, 256 67.38, 128 73.38, 64 79.90, 256

9th fold 66.05, 256 73.33, 128 75.67, 16 83.58, 64

8th fold 66.43, 128 65.04, 256 66.90, 128 76.60, 64

7th fold 66.19, 64 67.10, 64 76.43, 256 80.05, 64

6th fold 66.24, 128 71.43, 128 70.24, 64 82.62, 128

5th fold 79.48, 128 78.70, 64 73.29, 32 81.58, 256

(Continues)
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TAB L E 1 (Continued)

N 1 2 3 4

4th fold 72.86, 64 75.24, 128 81.23, 64 82.43, 64

3rd fold 74.05, 64 72.86, 128 81.07, 64 83.43, 128

2nd fold 72.86, 128 79.86, 64 76.43, 64 80.86, 256

1st fold 65.71, 128 64.52, 64 74.52, 64 71.20, 8

Note: Bold values correspond maximum M-accuracy.

TAB L E 2 Values of (N�accuracy,N�opt) in 10-fold cross-validation

M 2 4 8 16 32 64 128 256

Data tuple: (D1,S16)

10th fold 70.24, 4 85.71, 4 92.86, {1, 3, 4} 90.48, 2 92.86, {1, 3, 4} 94.05, 1 95.24, 2 96.43, 1

9th fold 57.14, 4 84.52, 4 91.67, {3, 4} 91.67, {3, 4} 96.43, 2 95.24, 2 94.05,1 91.67, {3, 4}

8th fold 46.43, 4 73.81, 4 89.29, 4 94.05, 3 94.05, 4 95.24, 2 95.24, 2 96.43, {1, 3}

7th fold 54.76, 3 73.81, 4 82.14, 4 86.90, 3 88.10, {1, 2, 3} 90.48, 1 89.29, {3, 4} 88.1, {1, 2, 3}

6th fold 53.57, 4 77.38, 4 85.71, 2 91.67, 2 94.05, 2 95.24, {1, 3} 97.62, 4 96.43, 2

5th fold 54.76, 4 75.00, 3 79.76, 3 84.82, 2 89.29, 3 88.10, 4 88.10, 4 90.48, 1

4th fold 60.71, 4 80.95, 3 91.67, {1, 3, 4} 90.48, 1 91.67, {1, 3, 4} 95.24, 2 92.86, {1, 2} 94.05, 4

3rd fold 59.52, 4 73.81, 4 82.14, 3 88.10, 4 90.48, 4 94.05, 1 92.86, 2 91.67, {2, 3, 4}

2nd fold 45.24, 4 75.00, 4 86.90, 4 91.67, 3 92.86, {1, 2, 3} 92.86, {1, 2, 3} 92.86, {1, 2, 3} 92.86, {1, 2, 3}

1st fold 48.81, 4 67.86, 4 72.62, 2 79.76, 3 83.33, 3 84.52, {2, 4} 85.71, 1 84.52, {2, 4}

Data tuple: (D1,S26)

10th fold 55.95, 4 85.71, 4 84.52, 2 90.48, 4 95.24, {1, 2, 4} 95.24, {1, 2, 4} 95.24, {1, 2, 4} 95.24, {1, 2, 4}

9th fold 57.14, 4 82.14, 4 88.10, 4 95.24, 4 96.43, 2 97.62, 2 95.24, 2 94.05, {1, 3}

8th fold 45.24, 4 72.62, 4 85.71, 2 91.67, 4 96.43, {2, 3, 4} 97.62, 2 98.81, 2 96.43, {2, 3, 4}

7th fold 46.43, 4 75.00, 4 86.90, 4 88.10, 2 92.86, {1, 2} 92.86, {1, 2} 91.67, {1, 3, 4} 92.86, {1, 2}

6th fold 53.57, 4 76.19, 4 86.90, 4 89.29, 4 91.67, 2 97.62, {1,2} 97.62, {1, 2} 97.62, {1, 2}

5th fold 48.81, 3 73.81, 4 83.33, 4 86.90, 4 89.29, {2, 3} 90.48, {1, 2, 4} 90.48, {1, 2, 4} 91.67, 2

4th fold 45.67, 4 75.00, 4 90.48, 4 92.86, {2, 3} 95.24, 2 96.43, 2 96.43, 2 95.24, 2

3rd fold 46.43, 4 72.62, 3 82.14, 4 86.90, 3 95.24, 2 91.67, 1 96.43, 2 91.67, 1

2nd fold 46.43, 3 72.62, 4 82.14, 4 86.90, 3 91.67, 4 96.43, 2 96.43, 2 92.86, 1

1st fold 45.24, 4 67.86, 3 83.33, 3 88.01, 4 89.29, 4 90.48, 3 95.7, 3 88.10, 2

Data tuple: (D1,S31)

10th fold 24.50, 1 28.05, 4 55.09, 3 61.90, 3 70.8, 4 77.38, {2, 3, 4} 77.38, {2, 3, 4} 78.90, 4

9th fold 26.9, 2 28.90, 3 70.24, 4 68.20, 2 76.40, 4 77.62, 4 75.24, 4 82.86, 2

8th fold 27.9, 1 27.90, 2 73.20, 3 70.2, 3 75.4, 4 80.48, 4 86.90, 3 85.04, 2

7th fold 28.90, 2 29.00, 4 71.43, 4 68.9, 4 76.90, 4 84.05, 2 85.40, 3 86.43, 4

6th fold 29.76, 2 27.9, 2 72.62, 3 69.90, 3 75.80, 4 86.29, 4 86.62, 4 86.62, 4

5th fold 30.1, 4 32.10, 3 76.30, 4 75.80, 3 73.6, 4 85.70, 2 81.67, 4 81.67, 4

4th fold 31.20, 2 34.2, 3 72.4, 4 69.80, 4 72.60, 4 86.43, 4 86.43, 4 85.24, 4

3rd fold 34.5, 2 35.7, 1 75.30, 3 73.70, 4 79.30, 4 86.43, 4 84.43, 4 82.86, 4

2nd fold 35.7, 1 38.7, 2 74.30, 3 78.9, 4 80.40, 4 82.86, {1, 4} 84.05, 4 85.86, 4

1st fold 30.1, 2 39.9, 3 75.0, 4 76.4, 4 84.8, 3 85.04, 3 85.71, 1 86.90, 3

(Continues)
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and access are correctly recognized when using
ðM, NÞ¼ ð128, 2Þ. The word much in the third row is rec-
ognized as the word max because letter u is recognized as
letter a and the last two letters, ch, are recognized as
letter x.

4 | DISCUSSION

The recognition accuracies of the air-written words
obtained from the proposed and existing methods [26],
[27], and [28] for datasets D1 and D2 are listed in Table 4.
In all the compared studies, HMM classifiers were used.

Fast processing with high accuracy on low-memory
devices is the goal of air-writing recognition. The accu-
racy on datasets D1 and D2 is improved using the pro-
posed method. This improvement is due to the better
feature selection (S26) provided by the GA (Algorithm 1)
from a large set of feasible feature combinations. Both
datasets benefit from set S26 in terms of accuracy.
Because Algorithm 1 is not used in other methods, the
computational and memory costs of our method are
higher. However, the accuracy improvement achieved by
the GA justifies its use. Furthermore, the computational
cost of the HMM using S26 is higher than that using S19
because S26 contains more features. Regarding large-scale
feature issues, dimensionality reduction may help
balance the tradeoff between accuracy and
computational cost.

TAB L E 2 (Continued)

M 2 4 8 16 32 64 128 256

Data tuple: (D2,S26)

10th fold 29.50, 1 28.05, 3 70.09, 4 61.90, 4 72.34, 4 73.38, 3 77.40, 4 79.90, 4

9th fold 37.90, 3 38.9, 2 74.24, 4 75.67, 3 56.40, 4 83.58, 4 80.24, 4 66.05, 1

8th fold 36.90, 2 29.90, 1 50.20, 2 54.20, 3 64.9, 3 76.60, 4 66.90, 3 65.04, 2

7th fold 27.90, 1 32.00, 3 61.430, 3 67.90, 4 63.90, 3 80.05, 4 75.40, 3 76.43, 3

6th fold 28.76, 1 37.90, 1 62.62, 3 69.70, 3 70.70, 4 81.29, 4 82.62, 4 63.62, 3

5th fold 30.10, 1 35.10, 1 67.30, 4 64.8, 3 66.60, 4 80.08, 4 79.48, 1 81.58, 4

4th fold 32.2, 1 44.20, 3 62.40, 4 70.80, 4 71.60, 4 82.43, 4 76.43, 4 75.24, 4

3rd fold 39.50, 1 38.70, 1 65.30, 3 72.7, 4 72.8, 4 81.30, 4 83.43, 4 82.34, 4

2nd fold 38.70, 1 42.70, 2 64.30, 3 68.90, 4 71.40, 4 79.86, 2 76.34, 3 80.86, 4

1st fold 39.10, 1 36.90, 2 71.20, 4 66.40, 4 64.80, 4 74.52, 3 71.67, 3 66.25, 4

Note: Bold values correspond maximum N-accuracy.

F I GURE 1 Confusion matrix of air-writing recognition

accuracy of words. The predicted and true labels are listed on the

horizontal and vertical axes, respectively.

TABL E 3 Samples from dataset D1 incorrectly recognized

when using HMM parameters ðM, NÞ¼ ð64, 2Þ. All these samples

are correctly recognized when using ðM, NÞ¼ ð128, 2Þ

Original
Trajectory

Recognized
Trajectory by
ðM,NÞ¼ ð64,2Þ

Original
Word

Recognized
Word by
ðM, NÞ¼ ð64, 2Þ

heap has

conquer dress

much max
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Over the past few years, deep-learning-based methods
have provided outstanding results for classification
problems, including sequence labeling. Recursive neural
networks, RNNs, and convolutional neural networks
(CNNs) are well-known deep networks [53]. The bidirec-
tional LSTM architecture [53] of an RNN with connec-
tionist temporal classification as its output layer is the
most successful deep network for sequence labeling. The
bidirectional LSTM combines LSTM [54] with a bidirec-
tional RNN [55]. The bidirectional LSTM network stores
information in the past and future (through the bidirec-
tional RNN) of a specific timeframe using long- and
short-term memory (from LSTM). On the other hand, the
performance of an attention recurrent translator is
comparable to that of connectionist temporal classifica-
tion for air-written English word recognition. Deep CNNs
and multi-column deep networks have provided promis-
ing results for offline handwriting recognition. The
CNN-based DeepCNet won the first place in the ICDAR
2013 Chinese handwriting recognition competition, and
its results have been improved by advanced CNN
architectures including DropWeight, DropDistortion, and
DropSample [56].

Kumar and others [27] obtained an accuracy of
86.88% for dataset D2 by using S19 and a bidirectional
LSTM network. The accuracy of our proposed method is
83.58% on dataset D2 using S26 and the HMM. When the
HMM is used, feature set S26 outperforms S19 in terms of
accuracy. When S19 is used, the bidirectional LSTM net-
work outperforms the HMM in terms of accuracy
(Table 4). Hence, using feature set S26 in the bidirectional
LSTM network may improve accuracy. However, the
recognition accuracy of any sequence labeling method

depends on its architecture, and the optimal architecture
for the bidirectional LSTM network must be determined
to reach its maximum possible accuracy. In this study,
experiments were not performed to optimize the architec-
ture of the bidirectional LSTM network. Graham [57]
used DeepCNet to label unidimensional temporal
sequences. In our study, air-written words were stored in
a 3D temporal sequence. Extending DeepCNet to 3D tem-
poral sequence recognition may improve the recognition
accuracy on datasets D1 and D2.

5 | CONCLUSIONS

The recognition accuracy of air-written words captured
by the LMC was studied with respect to various sets of
features and parameters of an HMM classifier. Feature
sets were obtained from the combinations of five fea-
tures, namely, wdir, curvature, tr, OC, and ellipsoid.
Good combinations of features obtained by a GA
included S16 (tr, OC, wdir), S26 (tr, OC, wdir, curvature),
and S31 (tr, OC, wdir, curvature, and ellipsoid). These
feature sets were used by the HMM classifier for word
recognition in samples from datasets D1 and D2. Feature
set S26 provided the best recognition on both datasets. In
addition, the best HMM parameter pairs ðM,NÞ for data-
sets D1 and D2 were (128, 2) and (64, 4), respectively.
Dataset D1 led to the highest recognition accuracy of
98.81%, while an accuracy of 83.58% was obtained for
dataset D2, which was slightly lower than the highest
accuracy of 86.88% obtained in [27]. The highest accuracy
for dataset D2 was achieved using a bidirectional LSTM
network.

In future work, we will combine HMMs and deep
networks to improve the accuracy of air-writing
recognition. The computational and memory costs
were higher in our method than in previous studies
that neglected feature selection. We verified an
improvement in accuracy using feature selection,
which is thus necessary. Furthermore, because S26 had
a larger dimension than S19, the computational cost of an
HMM using S26 was higher. To handle large-scale feature
issues, dimensionality reduction should be explored to
balance the tradeoff between the accuracy and computa-
tional cost. Eventually, we intend to develop a framework
suitable for making notes collected from air-written
words.
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TAB L E 4 Comparison between proposed and existing

methods for air-writing recognition on datasets D1 and D2

Study Dataset Features Accuracy

This study D1 tr, OC, wdir, 98.81%

curvature (S26)

Kumar et al. D1 tr, wdir, 92.70%

(2017) [28] curvature (S19)

Agarwal et al. D1 word boundaries 77.62%

(2015) [26] with

help of

partial differentiation

This study D2 tr, OC, wdir, 83.58%

curvature (S26)

Kumar et al. D2 tr, wdir 81.25%

(2016) [27] curvature (S19)
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