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Abstract

To treat the novel COronaVIrus Disease (COVID), comparatively fewer

medicines have been approved. Due to the global pandemic status of COVID,

several medicines are being developed to treat patients. The modern COVID

medicines development process has various challenges, including predicting

and detecting hazardous COVID medicine responses. Moreover, correctly pre-

dicting harmful COVID medicine reactions is essential for health safety.

Significant developments in computational models in medicine development

can make it possible to identify adverse COVID medicine reactions. Since the

beginning of the COVID pandemic, there has been significant demand for

developing COVID medicines. Therefore, this paper presents the transfer-

learning methodology and a multilabel convolutional neural network for

COVID (MLCNN-COV) medicines development model to identify negative

responses of COVID medicines. For analysis, a framework is proposed with

five multilabel transfer-learning models, namely, MobileNetv2, ResNet50,

VGG19, DenseNet201, and Inceptionv3, and an MLCNN-COV model is

designed with an image augmentation (IA) technique and validated through

experiments on the image of three-dimensional chemical conformer of 17

number of COVID medicines. The RGB color channel is utilized to represent

the feature of the image, and image features are extracted by employing the

Convolution2D and MaxPooling2D layer. The findings of the current

MLCNN-COV are promising, and it can identify individual adverse reactions

of medicines, with the accuracy ranging from 88.24% to 100%, which outper-

formed the transfer-learning model’s performance. It shows that three-

dimensional conformers adequately identify negative COVID medicine

responses.
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1 | INTRODUCTION

During the first half of 2020, the World Health Organiza-
tion declared COronaVIrus Disease (COVID) as a pan-
demic all over the world [1, 2]. As of early September
2022, more than 590 million confirmed cases of COVID,
and more than 6.5 million people had died. Every day,
the number of COVID positivity and death increases
rapidly and continuously. So, effective COVID medicines
are necessary to cure this disease [3]. Negative medicine
responses are unwanted, adverse, and unfavorable
effects. Because of COVID, global public health will face
significant problems and health concern issues in the
near future [4–6], so the development of effective
medicines (drugs) is essential. Predicting adverse COVID
medicine reactions is critical to the medicines develop-
ment pipeline. Also, one of the most common reasons for
medicine failure is harmful medicine reactions. There-
fore, predicting the adverse COVID medicine reactions is
needed for human health concerns. Several computa-
tional models are available for medicines development,
design, and discovery. In the current work, MobileNetv2,
ResNet50, VGG19, DenseNet201, Inceptionv3, and
MLCNN-COV have been employed to identify negative
responses of COVID medicines.

In the early phase of medicines development, discov-
ery, and design, medicines properties play a crucial role in
analyzing negative medicine responses [7]. While many
pharmacological features have been used to predict nega-
tive medicine responses to analyze various medicines,
chemical 3D conformers have yet to be applied to predict
adverse COVID medicine reactions. The one-dimensional
chemical structure, medicine-like properties, medicines
functions, and biological characteristics (protein and gene
expression signature) of medicines have been utilized in
most of the research work on medicines discovery, devel-
opment, and design to identify adverse medicine reactions
[8–11]. However, the image of the three-dimensional
chemical conformers may be crucial for predicting negative
medicine responses because negative responses of medi-
cines may be related to chemical conformers’ structures.
The research community has not yet used computational
methods to investigate the association between three-
dimensional chemical conformers and adverse medicine
reactions. The problem of pessimistic medicine response
prediction using a chemical three-dimensional conformer
structure is multilabel since there may be numerous
adverse reactions that correspond to a given medicine.

The key contribution of this study is presenting a
framework with an image augmentation technique for
predicting adverse medicine reactions via designing an
MLCNN-COV from the properties of the three-
dimensional chemical conformer that have not yet been

used to predict negative responses of COVID medicines.
Also, a multilabel pretrained models framework is pre-
sented to compare the performance of MLCNN-COV.

The remaining sections of this article have been
arranged as follows: the next section summarizes related
work to identify negative responses of medicines. The
following sections demonstrate the dataset, suggested
MLCNN-COV methodology, and other transfer-learning
models. After that, the experimental design and out-
comes have been provided. The last section summarizes
the conclusions of the work.

2 | RELATED WORK OF
NEGATIVE MEDICINE RESPONSE

In their work, Das and others [9] analyze adverse medi-
cine (drug) responses from the medicine functions. To
perform the experiments, the authors applied the binary
relevance transformation method with the help of extra
tree classifier (ETC), random forest (RF), K nearest
neighbors (KNN), decision tree (DT), and multilayer
perceptron neural network (MLPNN). They obtained that
ETC classifiers results outperformed the other machine
learning methods. In a different work, Das and others [8]
utilized medicine functions, 17 molecular properties, and
simplified molecular input line entry system (SMILES)
and their combination to identify negative medicine
responses. Further, the authors applied deep neural
network (DNN) in all integrated medicine properties
datasets. They found that the combination of SMILES
string and medicines functions exhibits better results
than other medicine properties. Wang and others [11]
detected negative responses of medicine from biological
information, biomedical literature information, and
17 molecular properties. The authors presented a DNN
model to identify negative medicine responses. Further,
they compared the DNN model with Gaussian Naïve
Bayes (GNB), linear support vector machine (SVM), and
probabilistic matrix factorizer models and found their
proposed model performs well. Istswaart and others [12]
applied RF and analyzed the association between phar-
macovigilance assay properties and negative medicine
responses. Further, antidepression adverse medicine
reactions are identified by Gunes and others [13] from
transporters, medicine-target, chemical structure, and
enzyme. They applied multilayer perceptron (MLP),
SVM, and KNN to execute their experiment and found
that the MLP method outperformed the other classifier
approaches. Shankar and others [14] presented an artifi-
cial neural network (ANN) model to predict medicine
pair harmful reactions from the chemical structure and
gene expression.
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The COVID vaccine negative responses are analyzed
by Hatmal and others [15] from the online survey and
applied XGBoost, RF, MLP, and K-Star and found that RF
performs well than other machine learning methods.
Swathi [16] predicts adverse medicine reactions from the
medical health form and applied linear regression (LR),
DT, RF, Naïve Bayes (NB), SVM, and linear support vector
classifier (LSVC) and found that RF outperforms than
other computational methods. In Jamal and others [17], a
RF and sequential minimization optimization computa-
tional methods are applied to identify negative cardiovas-
cular medicine responses from phenotypic, biological, and
chemical structures, and they found that phenotypic prop-
erties are better than the other properties. In a different
work, Jamal and others [18] employed SVM and detected
negative responses of neurological medicine from pheno-
typic, biological, and chemical structures. They found that
the combination of all the medicines properties
performance is comparatively better than the other three-
level, two-level, and individual medicines properties. An
LR model is presented by Pouliot and others [19] to iden-
tify adverse medicine reactions from the system organ
class. Further, an SVM computational learning model is
presented by Liu and others [20] to analyze adverse medi-
cine reactions from medical reports. In Jahid and Ruan
[21], an ensemble method is provided to identify adverse
medicine reactions from chemical structure. Jiang and
Zheng [22] utilized Twitter posts to detect negative medi-
cine responses by employing SVM, NB, and maximum
entropy (ME). Their presented ME method obtained good
results comparatively than others. An SVM model is
applied by Huang and others [23] to identify potential neg-
ative medicine responses from protein–protein interac-
tions, medicine-target, and chemical structure. In LaBute
[24], an LR model is presented to detect negative medicine
responses from protein-target. Zhang and others [25] pro-
vided an FSMLKNN classifier approach to detect negative
responses of medicine from chemical and medicine-target
properties. Further, a machine learning methodology is
presented by Niu and others [26] by utilizing kernel
regression (KR), SVM, neural network (NN), and sparse
canonical correlation analysis (SCCA) to detect adverse
medicine reactions. Hu and others [27] proposed a novel
approach GraphSE to predict negative medicine responses
from the medicines substructure. The authors compared
their proposed model with SCCA, SVM, NB, GraphSE-
NCut, and GraphSE-RankClus and found that their pro-
posed approach achieved better results than the existing
machine learning approaches.

A DNN model is proposed by Odeh and Taweel [28]
to detect negative medicine responses from Twitter posts.
Their proposed approach achieved the highest results
compared with existing models such as recurrent

convolutional neural network (RCNN), convolutional
neural network (CNN), CNN with attention (CNNA),
majority vote classifier, and CNN-Google News. In a dif-
ferent work, Wang and others [29] summarized the com-
monly used machine learning models and medicine
properties to predict negative medicine responses and
reviewed several research articles on pessimistic medi-
cine response prediction. Nguyen and others [30] pre-
sented a brief description of machine learning
techniques, medicine features, and pessimistic medicine
response prediction tasks. The authors summarized nega-
tive medicine responses related to articles and analyzed
their challenges and research gaps. Depth analyses of
pessimistic medicine responses prediction and detection
articles are summarized by Das and others [31] based on
the different medicinal properties and computation
approaches to predict negative medicine responses. Also,
the authors analyze different problems and challenges
during pessimistic medicine response prediction.

The negative medicine response prediction literature
demonstrates how pharmaceuticals use transcriptomic
data (gene expression information), medicine-target,
biological information, and 1D chemical structure.
According to the literature review, there is still necessity
to make some improvements in the medicines discovery,
development, and design, including utilizing unexplored
medicine attributes to identify negative medicine
responses, such as three-dimensional chemical con-
formers. The ability to identify negative COVID medicine
responses from the three-dimensional chemical con-
former has not yet been utilized. This work aims to
design an MLCNN-COV and multilabel transfer-learning
framework with an image augmentation technique to
predict negative COVID medicine response by employing
a three-dimensional chemical conformer.

3 | PROPOSED METHODOLOGY
AND WORKFLOW OF THE
FRAMEWORK

This section demonstrates the proposed MLCNN-COV
and transfer-learning framework and the problem
statement with the solution for predicting negative
COVID medicine reactions from the image of a three-
dimensional chemical conformer.

3.1 | Datasets description

The procedure of developing the Negative COVID
Medicine Responses Dataset (CMRD) for the proposed
framework to predict negative medicine responses from
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the three-dimensional chemical conformer has been
illustrated in Figure 1.

The drugs.com website lists several medications that
can be used to treat COVID illness. Among those
medicines, only 17 COVID medicines chemical three-
dimensional conformer are listed in PubChem [32] such
as Remdesivir, Umifenovir, MK-4482, Baricitinib,
Colchicine, Dexamethasone, Favipiravir, Hydroxychloro-
quine sulfate, PF-07321332, Protein kinase inhibitors,
Zyesami, Fluvoxamine, Hydroxychloroquine, Chloro-
quine phosphate, Peginterferon Lambda, Bemcentinib,
and Methylprednisolone. After collecting the COVID
medicine name from Drugs.com (Link: https://www.
drugs.com/condition/covid-19.html?page_all=1), the
three-dimensional conformers are collected from the
PubChem data repository. The medicine name is utilized
as input on the PubChem search space to collect three-
dimensional conformers’ images (Link: https://pubchem.
ncbi.nlm.nih.gov/). After that, by clicking the medicine
link, select the 3D Conformer section and choose the ball
and stick chemical structure. Further, select the Get
Image option, choose the Large size of the image, and
download it. Furthermore, negative medicine responses
for each drug are collected from WebMD (Link: https://
www.webmd.com/). On the WebMD [33] website,
29 adverse medicine reactions are listed for those
17 COVID medicines, such as asthma attack, sweating,
headache, liver function test abnormal (LFTA), weak-
ness, blood pressure increased (BPI), abdominal cramps
(AC), decreased appetite (DA), irregular heartbeat (IH),
trouble sleeping, abdominal pain, tired and heavy,
stomach upset, vomiting, trouble breathing, diarrhea,
heartburn, changes in taste, sore mouth, muscle pain,

nausea, fever, drowsiness, swelling, chills, seizures,
dizziness, rash, and constipation.

For preparing the dataset, collected COVID medicine
chemical three-dimensional conformer listed on Pub-
Chem was combined with labels of negative medicine
responses of the corresponding COVID drugs obtained
from WebMD into a multilabel dataset.

3.1.1 | Negative medicine response

The medicine responds extracellularly as per the chemi-
cal reactions. Sometimes medicine responses become
adverse due to some toxic chemical reactions. Negative
medicine reactions are a prominent human health issue
caused by the toxic chemical reactions of medicine dur-
ing the use of medicine to treat diseases. Negative medi-
cine responses are undesirable and unanticipated effects
of medicine [8, 34], which are collected from WebMD
[33]. This collected information contains data on the
market availability of medicine and any observed nega-
tive medicine responses. Each medicine has a unique ID,
with 17 medicines and 29 negative medicine responses in
the collected information.

Several medicine side effects occur in the human
body. These side effects appear due to the chemical reac-
tions of medicine. Due to the chemical reactions of the
medicine, most of the time, negative medicine reactions
occur in the patient body. These negative medicine reac-
tions are associated with chemical conformers, so analyz-
ing chemical conformers is an integral part of drug
development. The list of negative medicine reactions and
chemical conformers is shown in Table 1.

F I GURE 1 Development procedure of Negative COronaVIrus Disease (COVID) Medicine Responses Dataset (NCMRD)
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TAB L E 1 Medicine and their negative reactions corresponding to chemical three-dimensional (3D) conformer.

Medicine Conformer NMR Medicine Conformer NMR

Remdesivir Sweating, LFTA, BPI, IH,
vomiting, trouble
breathing, nausea, fever,
swelling, chills, seizures,
dizziness, rash, sweating.

Zyesami Headache, DA, trouble
sleeping, vomiting,
diarrhea, drowsiness,
dizziness

Dexame-
thasone

Headache, IH, trouble
sleeping, stomach upset,
vomiting, trouble
breathing, heartburn,
nausea, swelling,
seizures, dizziness, rash

Peginterferon
Lambda

Headache, LFTA, DA,
trouble sleeping, tired
and heavy, vomiting,
diarrhea, nausea, fever,
swelling, chills, dizziness,
rash

Hydroxy-
chloroquine

Sweating, abdominal pain,
headache, nausea,
vomiting, diarrhea,
dizziness, rash.

Umifenovir Diarrhea, nausea, rash

Favipiravir Asthma attack, headache,
stomach upset, trouble
breathing, heartburn,
muscle pain, nausea,
fever, drowsiness,
swelling, dizziness,
constipation.

PF-07321332 Vomiting, diarrhea, changes
in taste, nausea

Colchicine Headache, abdominal
cramps, abdominal pain,
vomiting, diarrhea,
nausea

Methyl- prednisolone Headache, DA, trouble
sleeping, vomiting,
sweating, heartburn,
nausea, dizziness

Chloroquine
phosphate

Headache, abdominal
cramps, abdominal pain,
vomiting, diarrhea,
nausea

Hydroxy-
chloroquine
sulfate

Sweating, headache, DA,
trouble sleeping,
vomiting, diarrhea,
nausea, dizziness

Baricitinib DA, tired and heavy,
abdominal pain,
vomiting, nausea, fever

Fluvoxamine Sweating, weakness, nausea,
DA, trouble sleeping,
vomiting, drowsiness,
dizziness

Protein kinase
inhibitors 1

DA, tired and heavy,
vomiting, diarrhea, sore
mouth, muscle pain,
nausea, swelling

MK-4482 Headache, vomiting,
diarrhea, nausea, rash

Bemcentinib DA, Diarrhea

Abbreviations: BPI, blood pressure increased; DA, decreased appetite; IH, irregular heartbeat; LFTA, liver function test abnormal; NMR, negative medicine
responses.

3.1.2 | Chemical three-dimensional
conformer

Chemical feature of medicine plays an essential role in
drug development [35]. The three-dimensional chemical

conformer of medicine is a vital feature of medicine [36].
These conformers are the best view to represent the
chemical structure in the image. In a three-dimensional
chemical conformer, the associations of the ball and stick
represent a chemical compound (medicine) structure that
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shows the atom position and the connections that con-
nect them [37]. Typically, spheres are used to represent
the atom, while sticks are used to depict the bonds. It is a
visual illustration of the chemical bond that holds atoms
in molecules together, where functional groupings,
chemical chains, and rings are linked in the three-
dimensional chemical conformer. A medicine’s physico-
chemical features, as well as its toxicity, excretion,
absorption, distribution, and metabolism features, are
also associated with the substructure of the conformer.
The PubChem database is being used for scraping the
chemical three-dimensional conformer [32].

3.2 | Problem statement

Let medicine = fM1,M2,M3,…,Mug be the set of
medicines, where u denotes the total number of
medicines (u = 17 in this article). Let NMR =

fNMR1,NMR2,…,NMRvg be the set of negative medicine
responses (NMR), where v is the total number of negative
medicine reactions (v = 29). Machines understand every
image as a matrix of numbers. This matrix’s size is depen-
dent on how many pixels are present in the input image.
The pixel values assigned to every pixel indicate that
particular pixel’s brightness and intended colors.
Therefore, pixels are the pixel values or numbers that

indicate the brightness or intensity of the pixel. Let
IMF_red = fIMF1,1, IMF1,2,…, IMFr,rg, IMF_green =

fIMF1,1, IMF1,2,…, IMFr,rg, and IMF_blue =

fIMF1,1, IMF1,2,…, IMFr,rg be used to describe a set of
three-dimensional conformer feature for RGB channel
where r is the RGB matrix cell value (r = 256). A medi-
cine can have more than one negative medicine response.
Thus, identifying negative medicine responses belongs to
a multilabel prediction activity. Figure 2 illustrates the
multiple negative medicine responses presentation,
where one defines the presence of a negative medicine
response and zero defines the absence of a negative medi-
cine response.

The images in the dataset are first converted to a size
of 256 � 256 � 3 (r� r�3); initial 256 represents the
height, next 256 the width, and 3 represents the number
of color channels. An image of size 256 � 256 � 3 is a
matrix with three layers (RGB), where each layer
contains 256 � 256 values. The computation of large
numeric values could become more complicated when
using the image as it is and running it through a CNN.
To reduce this, we normalize the data to fall between
0 and 1. Since each matrix value ranges from 0 to
255, that indicates the intensity of that pixel’s color.
Therefore, dividing all numbers by 255 will change the
range from 0 to 1. As a result, the calculations will be
simpler and quicker because the numbers will be small.

F I GURE 2 Illustration of multiple-label negative medicine responses.
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A medicine have a three-dimensional chemical
conformer, and each medicine has negative responses. So
each three-dimensional chemical conformer feature is
also related to negative medicine responses.

3.3 | Workflow of proposed methodology

The diagrammatic representation of the workflow of the
proposed framework to identify negative COVID
medicine responses from the three-dimensional chemical
conformer is shown in Figure 3. At first, the three-
dimensional chemical conformers are scrapped from
PubChem, and negative COVID medicine responses are
collected from WebMD. After collecting the three-
dimensional conformer, image preprocessing is needed to
give as an input feature to MLCNN-COV and pretrained
models. Once preprocessing is done, the proposed frame-
work is designed to identify negative medicine responses
of COVID medicines. The CNNs model needs a large
number of training samples to perform well. So, to
improve the model performance, image augmentation
has been applied. The performance of the presented
model MLCNN-COV classifier is affected by different
parameter values of image augmentation techniques. The
model performance has been analyzed by setting the dis-
tinct values of the parameters of image augmentation
and found that the model performed better with the
value of shear-range = 0.2, width-shift-range = 0.1,
rotation-range = 25, height-shift-range = 0.1, zoom-

range = 0.2, fill-mode = “nearest”, and horizontal-flip =

“True”. In the present work, 1 three-dimensional chemi-
cal conformer is used to test the model, and 16 new
images are generated with the help of image augmenta-
tion in each epoch for training (for each conformer, one
new augmented image is generated in each epoch).
Hence, in 10 epochs, for each conformer, 10 new images
are generated for the experiment. In each epoch, the
model will get distinct variations of the chemical con-
formers with the help of ImageDataGenerator class that
permits the model to acquire new variations of the chem-
ical conformers. In 10 epochs, 10 � 16 (160) variations of
the images will be generated and fed into the training
model. The original chemical conformer of hydroxychlor-
oquine drug has been illustrated in Figure 4 and after
applying the image augmentation on the chemical con-
former of hydroxychloroquine drug has been shown in
Figure 4A–J. The images are generated artificially from
the original chemical three-dimensional conformer to
improve the performance of the classification models.
Furthermore, evaluate the performance of the presented
methodology using average hamming-loss (H-L), average
accuracy (A), micro average of precision (P), recall (R),
and F1 score, macro average of precision, recall, and F1

score, and weighted average of precision, recall, and F1

score and receiver operating characteristic-area under the
curve (ROC-AUC) score.

3.4 | Proposed framework

The most used deep learning model for image classifica-
tion is CNN and transfer-learning models [38, 39]. The two
parts of the presented MLCNN-COV framework are pre-
sented in Figure 5. The first part was taken for extracting
features from the three-dimensional chemical conformer,
and the second part classified the three-dimensional chem-
ical conformer into 29 negative COVID medicine
responses. Four layers exist for the feature extraction,
including the input layer, which contains the three-
dimensional chemical conformer for the presented
MLCNN-COV framework. Second, a convolutional layer is
used where filters are applied to the original chemical
three-dimensional conformer. Third, a pooling layer mini-
mizes the computation needed by the MLCNN-COV
model, which gradually reduces the input chemical three-
dimensional conformer structure spatial dimension. The
fourth layer is called the dropout layer. It serves as a mask
by removing some neurons’ functional processes from the
subsequent layer while maintaining the functional pro-
cesses of other neurons. On the other hand, a fully con-
nected layer is utilized in the second part of the framework
to identify negative COVID medicine reactions.

F I GURE 3 Proposed model workflow to identify negative

COronaVIrus Disease (COVID) medicine response.
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3.4.1 | Feature extraction of the proposed
methodology

The procedure of image feature extraction from the
chemical conformer has been provided in this section.

A CNN is utilized to extract features from the image
of the chemical three-dimensional conformer. The
images of chemical three-dimensional conformer are first
converted to a size of 256�256�3, where the three
denotes the image’s three color channels (R, G, and B).
The features of the image of the chemical three-
dimensional conformer are extracted utilizing the follow-
ing stages:

The Convolution2D layer utilizes a set of filters for
the input chemical three-dimensional conformer; each
filter is a size of a 3�3 matrix of weights. The Convolu-
tion2D layer executes a convolution process on the input
image of chemical conformer to create a new feature
map. Further, an Activation layer applies a nonlinear
activation function (in this paper, the ReLU function) to
the output of the Convolution2D layer, which allows the
model to learn more complicated patterns from the
image. The MaxPooling2D layer operates a max pooling
operation on the output obtained by the Activation layer.
It reduces the feature map’s spatial dimensions, which
helps decrease the number of parameters in the network

F I GURE 4 The original and new augmented chemical

conformer images of hydroxychloroquine drug: (A) original

image, (B) augmented image, (C) augmented image,

(D) augmented image, (E) augmented image,

(F) augmented image, (G) augmented image,

(H) augmented image, (I) augmented image, (J) augmented

image, (K) augmented image.
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and prevents overfitting. The Dropout layer randomly
sets a fraction of the output values to zero, which aids in
preventing overfitting by minimizing the dependency on
any feature. In order to input the data into the next layer,
the data must be flattened into a single vector of values
which is performed by the Flatten layer. The Dense layer
applies a linear transformation to the flattened feature
vector, producing a 29 dimensional output vector. The
Dense layer represents the final set of image features of
the chemical three-dimensional conformer extracted by
the network. The Activation layer produces the final out-
put vector of probabilities by applying the sigmoid activa-
tion function to the Dense layer’s output. The output
produced by this layer can be utilized for identifying neg-
ative medicine responses by utilizing a threshold value.
These features are learned by the model during training
and can be used to represent the visual content of the
image of a three-dimensional chemical conformer in a
compact and useful form.

3.5 | Transfer-learning

Transfer-learning has become an essential part of the
modern image classification problem. Transfer-learning
models play a crucial role and are being utilized to solve
complex tasks in modern drug development research. For
identifying negative COVID medicine responses, five
multilabel transfer-learning models, namely, Mobile-
Netv2, ResNet50, VGG19, DenseNet201, and Inceptionv3,
and an MLCNN-COV model are designed with an image
augmentation technique.

• MobileNetV2: In order to function well on mobile
devices, MobileNetV2 transfer-learning is designed. It
is built on an inverted residual architecture so that the
residual connections connect the bottleneck layers.
Lightweight depthwise convolutions are used in the
intermediate expansion layer as a source of nonlinear-
ity to filter features. The MobileNetV2 architecture

includes a 32-filter with an initial fully convolution
layer as well as 19 residual bottleneck layers [40, 41].

• DenseNet201: DenseNet is based on the notion that
convolutional networks may be trained to be signifi-
cantly deeper, more precise, and more effective if they
have shorter connections between layers that are close
to the input and those that are close to the output. The
DenseNet-201 transfer-learning model consists of a
CNN with 201 layers deep [42].

• ResNet50: Residual Network is abbreviated as ResNet.
It is a residual network with 50 layers [43, 44]. Some-
times the performance of DNN starts to decrease when
add more layers. This occurs as a result of the vanish-
ing gradient issue. When they are backpropagated
through the DNN and repeatedly multiplied, gradients
become particularly small and cause the vanishing gra-
dient issue. By employing identity bypass connections
that skip more than one layer, ResNet50 is able to
address the vanishing gradient issue.

• Inceptionv3: Inceptionv3 is the third version of Goo-
gle’s Inception CNN. Inceptionv3 was created to
enable deeper networks while keeping an excessive
amount of parameters from being used. Inceptionv3 is
a CNN that consists of 48 layers deep [45].

• VGG19: Visual Geometry Group is known as VGG. It
has several layers and is a typical deep CNN architec-
ture. The term “deep” describes the amount of layers,
with VGG19 having 19 convolutional layers [46, 47].
This transfer-learning model is based on the essential
features of CNN. This network has learned rich feature
representation for a wide range of the image.

3.6 | Parameter settings

In this section, the MLCNN-COV and multilabel
transfer-learning framework parameters have been
demonstrated.

Leave-one-out cross-validation is utilized to evaluate
the experiment with the help of the Python program-
ming language in Google Colab. Sequential API, Keras,
and TensorFlow are employed to construct the presented
MLCNN-COV model and transfer-learning framework.
Different parameters of the MLCNN-COV model and
transfer-learning models have an impact on the perfor-
mance of the experiment. Hence, the presented frame-
work have been evaluated with distinct parameters. The
performance of the proposed framework (MLCNN-COV)
with several numbers of convolutional layers is shown in
Figure 6. In the first MLCNN-COV model convolutional
layers with 16 filters, the second MLCNN-COV model
convolutional layers with 32 filters and the third
MLCNN-COV model convolutional layers with 64 filters

F I GURE 5 Architecture of the presented multilabel

convolutional neural network for COVID (MLCNN-COV) model.
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are used, respectively, and so on with their combination
and found that the convolutional layer with 64 filters
with dropout rate 0.2 performs well. For all the convolu-
tional layers, Relu activation function is employed. In
order to carry out the experiment, the MLCNN-COV
framework utilized RGB channel and resized the chemi-
cal three-dimensional conformer structure to 256 � 256
pixels with Max Pooling with 2 � 2 window size and 3 �
3 kernel sizes for all convolutional layers. Different drop-
out rates have been imported to evaluate how well the
framework works. Furthermore, it is noticed that the
performance of the MLCNN-COV framework is not
enhanced as the dropout rate increases to 0.2. To build
the MLCNN-COV framework, binary cross entropy is
set for the loss function, and the optimizer is set to
adam. The epoch number is set to 10 with the help of a
learning rate of 0.0001, and the sigmoid activation func-
tion is employed in the fully connected layer for output.
The COVID medicines may have multiple negative med-
icine responses, which is referred to as the multilabel
classification activity. As a result, the model’s final layer
is constructed using 29 neurons, which is the same as
the total number of labels with a threshold value of 0.5.

Sequential API, Keras, and TensorFlow (tf) are
employed to construct the transfer-learning models: for
MobileNetV2 tf.keras.applications.MobileNetV2, for Den-
seNet201 tf.keras.applications.DenseNet201, for ResNet50
tf.keras.applications.ResNet50, for Inceptionv3 tf.keras.
applications.inception_v3.InceptionV3, for VGG19 tf.
keras.applications. VGG19 have been imported from Ten-
sor Flow-Keras to implement transfer-learning models.

For all the transfer-learning models, the input shape
is set to (256, 256, 3), and weights are set to “imagenet”.
The transfer-learning models have also been tested with
distinct parameters and found that with a dropout rate of
0.2 and setting Global AveragePooling2D achieved a good
result. To build the transfer-learning models, binary cross
entropy is set for the loss function, and the optimizer is
set to adam. The epoch number is set to 10 with the help
of a learning rate of 0.0001, and the sigmoid activation
function is employed in the output layer for output. The
COVID medicines can have more than one adverse medi-
cine response, so the problem belongs to multilabel clas-
sification activity. As a result, the model’s final layer is
constructed using 29 neurons, which is the same as the
total number of labels with a threshold value of 0.5.

4 | EXPERIMENTAL RESULTS
AND DISCUSSION

This section provides the performance measurement
details and experimental results of the presented frame-
work to identify negative COVID medicine responses
from the three-dimensional chemical conformer.

4.1 | Performance measurement

This section presents the multilabel algorithms perfor-
mance metric to analyze how well they identified nega-
tive responses of COVID medicine. The example-based

F I GURE 6 Different parameters performance of multilabel convolutional neural network for COVID (MLCNN-COV) model to identify

negative COronaVIrus Disease (COVID) medicine responses.
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strategy has been used to evaluate the performances
[48, 49]. Let us assume AL as a set of Actual Labels (AL)
that are present in an example si and TL(si) be the set of
labels that the MLCNN-COV and transfer-learning com-
putational methods predict.

Accuracy¼ 1
N

XN

i¼1

jTLðsiÞ\ALij
jTLðsiÞ[ALij , ð1Þ

Hamming-loss¼ 1
N

XN

i¼1

1
c
jTLðsiÞΔALij, ð2Þ

Precision¼ 1
N

XN

i¼1

jTLðsiÞ\ALij
jALij , ð3Þ

Recall¼ 1
N

XN

i¼1

jTLðsiÞ\ALij
jTLðsiÞj , ð4Þ

F1 ¼ 1
N

XN

i¼1

2jTLðsiÞ\ALij
jTLðsiÞjþ jALij : ð5Þ

In the equations above, N stands for the total count of
instances, c for the number of possible labels, and Δ for
the symmetry difference between the predicted label and
actual label sets.

ROC-AUC is one of the most crucial probabilistic
score evaluation criteria for analyzing the effectiveness of
multilabel models. It shows how well the computational
transfer-learning models can classify the distinct classes
at various threshold levels and serves as a degree or indi-
cator of class separability.

4.2 | Results

This section provides the performance study of the
presented MLCNN-COV and its comparative study with
Inceptionv3, MobileNetv2, VGG19, DenseNet201, and
ResNet50 transfer-learning models.

From Table 2, it can be observed that the MLCNN-
COV classifier outperformed the transfer-learning
model’s performance. MLCNN-COV classifiers achieved
the highest average accuracy score of 93.51%, and it can
identify individual adverse reactions of COVID medi-
cines, with accuracy ranging from 82.35% to 100%. It can
be observed from Table 2 that for the MLCNN-COV
classifier model, negative medicine reactions include AC,
asthma attack, changes in taste, constipation, heartburn,
muscle pain, sore mouth, stomach upset, and tired and
heavy that are expressed fully (100%). In contrast, most

other negative medicine reactions are expressed in an
accuracy range of 82.35% to 94.12%. After applying the
image augmentation technique to train the MLCNN-
COV framework effectively, it can be observed from
Table 3 that the MLCNN-COV classifier performs well
and achieved the highest average accuracy score of
97.16%. The MLCNN-COV classifier with image augmen-
tation was applied on the image of the three-dimensional
chemical conformer; 17 negative COVID medicine
responses (abdominal cramps, asthma attack, changes in
taste, constipation, heartburn, muscle pain, sore mouth,
stomach upset, tired and heavy, BPI, chills, fever, IH,
liver function test abnormal, seizures, swelling, and trou-
ble breathing) among the 29 negative medicine reactions
has achieved the highest 100% accuracy for each negative
medicine reactions. In contrast, the remaining negative
medicine reactions (abdominal pain, DA, diarrhea, dizzi-
ness, drowsiness, headache, nausea, rash, sweating, trou-
ble sleeping, weakness, and vomiting) achieved accuracy
in the range of 88.24% to 94.12%.

On the other hand, among the transfer-learning
models, the Inceptionv3 and MobileNetv2 classifiers
performed well. It can be observed from Table 2 that the
Inceptionv3 and MobileNetv2 classifier models achieved
individual negative medicine reactions accuracy in a
range of 58.82% to 100% and achieved an average
accuracy score of 82.76%. On evaluating the model
performance with image augmentation across each
adverse medicine reaction, it has been observed that the
models performance has improved, which can be
observed from Table 3. The Inceptionv3 classifier model
achieved an average accuracy score of 92.09% and
individual negative medicine reactions accuracy in the
range of 64.71% to 100%. The Inceptionv3 classifier model
expressed fully for some adverse medicine reactions
(abdominal cramps, asthma attack, changes in taste,
constipation, heartburn, and tired and heavy) and
achieved 100% accuracy. After applying the image
augmentation, the MobileNetv2 classifier model
performance has also improved and achieved an average
accuracy score of 86.64% and accuracy for individual
negative medicine reactions in the range of 70.59% to
100%. The MobileNetv2 classifier identifies three adverse
medicine reactions (asthma attack, constipation, and
dizziness) 100% accurately, which can be observed from
Table 3.

It can be noticed from Table 2 that the VGG19 classi-
fier model has achieved accuracy in the range of 35.29%
to 94.12% for each adverse medicine reaction and a
79.31% average accuracy score. On analysis of individual
negative medicine reaction-wise after applying image
augmentation, VGG19 classifier model accuracy was
achieved in the range of 58.82% to 94.12%, and the
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average accuracy achieved by the model is 82.76%, which
can be observed from Table 3.

For each negative medicine reaction, the performance
of the DenseNet201 classifier model has been observed
from Table 2. It achieved accuracy on each negative med-
icine response in the range of 58.82% to 94.12% and aver-
age accuracy of 81.54%. In the study of each negative
medicine reaction-wise after applying image augmenta-
tion technique, accuracy is achieved in the range of
64.71% to 100%, and the average accuracy achieved by
the DenseNet201 model is 88.03%. The DenseNet201

classifier model expressed fully for Constipation adverse
medicine reactions and achieved 100% accuracy, which
can be observed from Table 3.

It can be observed from Table 2 that the ResNet50
classifier model achieved individual negative medicine
reactions accuracy in a range of 17.65% to 94.12% and got
an average accuracy score of 77.49%. Further, Table 3
shows that the individual adverse medicine reactions
accuracy range is improved in a range of 47.06% to
94.12% after applying the image augmentation technique
and achieved an average accuracy score of 81.34%.

TAB L E 2 Accuracy score of the MLCNN-COV and transfer-learning models to identify individual negative medicine responses from

three-dimensional chemical conformer.

Class MLCNN-COV Inceptionv3 MobileNetv2 VGG19 DenseNet201 ResNet50

AC 100 88.24 76.47 76.47 82.35 88.24

Abdominal pain 94.12 70.59 76.47 76.47 70.59 64.71

Asthma attack 100 94.12 100 88.24 94.12 94.12

BPI 94.12 94.12 94.12 94.12 94.12 94.12

Changes in taste 100 94.12 94.12 88.24 94.12 94.12

Chills 94.12 88.24 94.12 88.24 88.24 88.24

Constipation 100 94.12 94.12 94.12 94.12 94.12

DA 88.24 76.47 58.82 52.94 64.71 17.65

Diarrhea 88.24 58.82 76.47 64.71 76.47 64.71

Dizziness 88.24 58.82 58.82 35.29 58.82 52.94

Drowsiness 94.12 82.35 70.59 82.35 76.47 76.47

Fever 94.12 82.35 58.82 76.47 76.47 76.47

Headache 82.35 76.47 64.71 58.82 64.71 58.82

Heartburn 100 88.24 82.35 82.35 76.47 82.35

IH 88.24 88.24 88.24 88.24 88.24 82.35

LFTA 94.12 94.12 94.12 94.12 88.24 94.12

Muscle pain 100 82.35 94.12 88.24 64.71 70.59

Nausea 94.12 82.35 82.35 88.24 88.24 88.24

Rash 82.35 64.71 64.71 64.71 64.71 64.71

Seizures 88.24 88.24 88.24 88.24 88.24 88.24

Sore mouth 100 88.24 94.12 94.12 88.24 76.47

Stomach upset 100 88.24 94.12 82.35 88.24 88.24

Sweating 82.35 76.47 76.47 76.47 76.47 76.47

Swelling 94.12 70.59 88.24 70.59 94.12 58.82

Tired and heavy 100 82.35 82.35 76.47 82.35 82.35

Trouble breathing 88.24 100 94.12 88.24 88.24 82.35

Trouble sleeping 94.12 82.35 82.35 70.59 76.47 70.59

Vomiting 94.12 82.35 82.35 82.35 82.35 82.35

Weakness 94.12 82.35 94.12 88.24 94.12 94.12

Average accuracy 93.51 82.76 82.76 79.31 81.54 77.49

Abbreviations: AC, abdominal cramps; MLCNN-COV, multilabel convolutional neural network for COVID.
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The performance of the presented MLCNN-COV
model has been evaluated and compared with Incep-
tionv3, MobileNetv2, VGG19, DenseNet201, and
ResNet50. It can be observed from Table 4 that the

MLCNN-COV model performed the best and achieved
the highest micro average precision (MiAP) score of
90.43%, macro average precision (MaAP) score of 74.63%,
weighted average precision (WAP) score of 84.64%, micro

TAB L E 3 Accuracy score of the MLCNN-COV and transfer-learning models after applying image augmentation technique to identify

individual negative medicine responses from three-dimensional chemical conformer.

Class MLCNN-COV+IA Inceptionv3+IA MobileNetv2+IA VGG19+IA DenseNet201+IA ResNet50+IA

AC 100 100 84.24 88.24 88.24 88.24

Abdominal
pain

94.12 94.12 70.59 76.47 76.47 76.47

Asthma
attack

100 100 100 94.12 94.12 94.12

BPI 100 94.12 94.12 94.12 94.12 94.12

Changes in
taste

100 100 94.12 94.12 94.12 94.12

Chills 100 94.12 88.24 88.24 88.24 88.24

Constipation 100 100 100 94.12 100 94.12

DA 88.24 88.24 76.47 76.47 82.35 58.82

Diarrhea 94.12 94.12 76.47 64.71 82.35 64.71

Dizziness 94.12 88.24 100 58.82 94.12 47.06

Drowsiness 94.12 94.12 88.24 82.35 82.35 82.35

Fever 100 94.12 94.12 76.47 88.24 76.47

Headache 94.12 88.24 94.12 70.59 94.12 58.82

Heartburn 100 100 88.24 82.35 82.35 82.35

IH 100 88.24 88.24 88.24 88.24 88.24

LFTA 100 94.12 94.12 94.12 94.12 94.12

Muscle pain 100 94.12 94.12 88.24 88.24 88.24

Nausea 94.12 88.24 88.24 88.24 88.24 88.24

Rash 94.12 64.71 70.59 64.71 64.71 64.71

Seizures 100 88.24 88.24 88.24 88.24 88.24

Sore mouth 100 94.12 94.12 94.12 94.12 94.12

Stomach
upset

100 94.12 94.12 88.24 88.24 88.24

Sweating 88.24 76.47 76.47 76.47 76.47 76.47

Swelling 100 88.24 82.35 70.59 94.12 70.59

Tired and
heavy

100 100 88.24 82.35 82.35 82.35

Trouble
breathing

100 88.24 88.24 88.24 88.24 88.24

Trouble
sleeping

94.12 94.12 88.24 70.59 94.12 70.59

Vomiting 94.12 94.12 88.24 82.35 88.24 82.35

Weakness 94.12 94.12 94.12 94.12 94.12 94.12

Average
accuracy

97.16 92.09 86.64 82.76 88.03 81.34

Abbreviations: AC, abdominal cramps; BPI, blood pressure increased; DA, decreased appetite; IA, image augmentation; IH, irregular heartbeat; LFTA, liver
function test abnormal; MLCNN-COV, multilabel convolutional neural network for COVID.
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average recall (MiAR) value of 83.20%, macro average
recall (MaAR) value of 70.88%, weighted average recall
(WAR) value of 83.20%, micro average F1 (MiAF1) mea-
sure of 86.67%, macro average F1 (MaAF1) measure of
71.57%, weighted average F1 (WAF1) measure of 83.14%,
and average ROC score of 90.11%, and the lowest
average H-L of 6.49%. After image augmentation, it can
be noticed that the MLCNN-COV framework with
image augmentation achieved the highest MiAR, MaAR,
WAR, micro average F1, macro average F1, weighted
average F1, MiAP, MaAP, and WAP, as well as the
lowest average H-L on three-dimensional chemical
conformer, which can be observed from Table 4. On the
other hand, without image augmentation technique
among the transfer-learning models, the Inceptionv3
and MobileNetv2 classifiers model achieved the lowest
H-L of 17.24%. For MiAP, the Inceptionv3 model
achieved the highest score of 71.74%. On the other
hand, the MobileNetv2 model achieved the highest
MaAP score of 41.86%, WAP of 57.80%, MiAR value of
60.80%, MaAR score of 37.10%, WAR value of 60.80%,
MiAF1 measure of 64.14%, MaAF1 measure of 37.24%,
WAF1 measure of 57.17%, and average ROC value of
75.51%. After applying the image augmentation tech-
nique, the Inceptionv3 classifier models performed the
best among the transfer-learning model, which can be
observed from Table 4.

The ROC-AUC score of MLCNN-COV and the
transfer-learning models are shown in Table 4. It can be
observed from Table 4 that the MLCNN-COV model
achieved the highest ROC-AUC score of 90.11%

compared with the transfer-learning model’s perfor-
mance. Also, after applying the image augmentation
technique to train the framework effectively, it can be
observed from Table 4 that the MLCNN-COV classifier
achieved the highest ROC-AUC score of 96.51% com-
pared with other transfer-learning classifiers models. On
the performance of the classifier-wise ROC-AUC, the six
classifier models have been ranked as MLCNN-COV >
MobileNetv2 > Inceptionv3 > DenseNet201 > ResNet50
> VGG19 with respect to their potential to predict
negative COVID medicine reactions. After applying the
image augmentation technique, ROC-AUC score of
MLCNN-COV and the transfer-learning models are
shown in Table 4. Regarding the classifier’s ROC-AUC
performance with image augmentation, the six models
have ranked as MLCNN-COV > Inceptionv3 > Mobile-
Netv2 > DenseNet201 > VGG19 > ResNet50 to identify
negative COVID medicine reactions.

The transfer-learning models have misclassified more
negative medicine reactions than the MLCNN-COV
model. Based on the average H-L of each classifier, the
models are ranked as MLCNN-COV > Inceptionv3 >
MobileNetv2 > DenseNet201 > VGG19 > ResNet50 to
identify adverse COVID medicine reactions. Image aug-
mentation has played a vital role in training the model
effectively across distinct negative medicine reactions. It
shows that the average H-L of MLCNN-COV and
transfer-learning models has decreased after images are
generated artificially from the original chemical three-
dimensional conformer to improve the performance of
the classification models.

TAB L E 4 Results of the MLCNN-COV and transfer-learning models on the chemical three-dimensional conformer structure to identify

negative COVID medicine responses.

Model H-L MiAP MaAP WAP MiAR MaAR WAR MiAF1 MaAF1 WAF1 ROC

MLCNN-COV 6.49 90.43 74.63 84.64 83.20 70.88 83.20 86.67 71.57 83.14 90.11

MLCNN-COV+IA 2.84 93.70 93.12 93.40 95.20 92.99 95.20 94.44 92.75 93.92 96.51

Inceptionv3 17.24 71.74 33.32 57.50 52.80 25.71 52.80 60.83 26.99 52.44 72.87

Inceptionv3+IA 7.91 93.00 68.73 82.07 74.40 58.31 74.40 82.67 61.82 76.73 86.25

MobileNetv2 17.24 67.86 41.86 57.80 60.80 37.10 60.80 64.14 37.24 57.17 75.51

MobileNetv2+IA 11.36 89.66 56.86 76.44 62.40 39.02 62.40 73.58 43.55 64.93 79.98

VGG19 20.69 63.53 11.52 33.09 43.20 15.33 43.20 51.43 13.06 37.24 67.39

VGG19+IA 17.24 75.00 15.00 40.67 48.00 17.00 48.0 58.00 16.31 43.49 71.28

DenseNet201 18.46 67.00 30.51 55.99 53.60 27.82 53.60 59.56 26.23 51.08 72.32

DenseNet201+IA 11.97 90.24 34.45 63.00 59.20 30.00 59.20 71.50 31.38 59.92 78.51

ResNet50 22.51 56.03 19.40 38.00 52.00 31.30 52.00 53.94 23.53 43.51 69.07

ResNet50+IA 18.66 70.37 15.31 40.21 45.60 15.52 45.60 55.34 14.35 39.74 69.54

Abbreviations: H-L, hamming-loss; MaAF1, macro average F1; MaAP, macro average precision; MaAR, macro average recall; MiAF1, micro average F1; MiAP,
micro average precision; MiAR, micro average recall; WAF1, weighted average F1; WAP, weighted average precision; WAR, weighted average recall.
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5 | CONCLUSIONS

Medicines typically get approval based on the clinical
studies and trial phases, which generally check the
adverse negative responses of medicine on a tissue or
cell. Therefore, it is common that several medications
have been taken off from the market in recent years
due to their negative responses. Identifying adverse
medicine reactions is costly, tedious, takes billions of
capital and human resources, and needs several clinical
trial phases with lots of chemical wastage. So, computa-
tional models for a medicine’s life cycle are especially
needed to accurately identify and analyze negative
responses. This study contributes to the solution of this
issue by designing a multilabel MLCNN-COV and
transfer-learning methodology with an image augmenta-
tion technique that utilizes an image of the chemical
three-dimensional conformer structure for negative
COVID medicine reactions detection. The image of the
chemical three-dimensional conformer is used as input,
where image features are represented using an RGB
color channel to predict negative COVID medicine reac-
tions. Further, the image features are extracted by
employing the Convolution2D layer and MaxPooling2D
layer. Five transfer-learning methods, including Mobile-
Netv2, ResNet50, VGG19, DenseNet201, and Inceptionv3,
were utilized to examine the experiments, and it found
that MobileNetV2 performed well compared with other
transfer-learning methods. In contrast, the MLCNN-COV
model performed best among the models under consider-
ation. The findings imply that chemical three-dimen-
sional conformer structure data help identify negative
COVID medicine responses. The suggested methodology
can also be used in COVID medication development to
examine negative COVID medicine responses.
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