Acknowledgement
This research was supported by 2024 Baekseok University research fund.
References
- Chandran, P., Zoss, G., Gotardo, P., & Bradley, D. (2023). Continuous landmark detection with 3D queries. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). https://studios.disneyresearch.com
- Guo, X., Li, S., Yu, J., Zhang, J., Ma, J., Ma, L., Liu, W., & Ling, H. (2019). PFLD: A practical facial landmark detector. arXiv preprint arXiv:1902.10859. https://arxiv.org/abs/1902.10859 10859
- Guo, X., Li, S., Yu, J., Zhang, J., Ma, J., Ma, L., Liu, W., & Ling, H. (2019). PFLD: A practical facial landmark detector. Papers With Code. https://paperswithcode.com/paper/pfld-a-practical-facial-landmark-detector
- Kar, P., Chudasama, V. M., Onoe, N., Wasnik, P., & Balasubramanian, V. (2023). Fiducial focus augmentation for facial landmark detection. In Proceedings of the 34th British Machine Vision Conference(BMVC). https://proceedings.bmvc2023.org
- Proll, S. (2023). Facial landmark detection is still easy with MediaPipe (2023 update). Retrieved from https://www.samproell.io
- Zeng, L., Chen, L., Bao, W., Li, Z., Xu, Y., Yuan, J., & Kalantari, N. K. (2023). 3D-aware facial landmark detection via multi-view consistent training on synthetic data. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR), 12747-12758. https://openaccess.thecvf.com/content/CVPR2023/papers/Zeng_3D-Aware_Facial_Landmark_Detection_via_Multi-View_Consistent_Training_on_Synthetic_CVPR_2023_paper.pdf
- Zhou, Z., Li, H., Liu, H., Wang, N., Yu, G., & Ji, R. (2023). STAR loss: Reducing semantic ambiguity in facial landmark detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). https://github.com/ZhenglinZhou/STAR
- Chandran, P., Zoss, G., Gotardo, P., & Bradley, D. (2023). Continuous landmark detection with 3D queries. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). https://cvpr.thecvf.com
- Guo, X., Li, S., Yu, J., Zhang, J., Ma, J., Ma, L., Liu, W., & Ling, H. (2019). PFLD: A practical facial landmark detector. arXiv Vanity. https://ar5iv.labs.arxiv.org/html/1902.10859
- Zeng, L., Chen, L., Bao, W., Li, Z., Xu, Y., Yuan, J., & Kalantari, N. K. (2023). 3D-aware facial landmark detection via multi-view consistent training on synthetic data. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). https://people.engr.tamu.edu
- Anonymous. (2023). Lite-HRNet Plus: Fast and accurate facial landmark detection. arXiv preprint arXiv:2308.12133. https://ar5iv.labs.arxiv.org/html/2308.12133
- Anonymous. (2023). STAR loss: Reducing semantic ambiguity in facial landmark detection. arXiv preprint arXiv:2306.02763. https://ar5iv.labs.arxiv.org/html/2306.02763
- Anonymous. (2023). Precise facial landmark detection by reference heatmap transformer. arXiv preprint arXiv:2303.07840. https://ar5iv.labs.arxiv.org/html/2303.07840
- Anonymous. (2023). KeyPosS: Plug-and-play facial landmark detection through GPS-inspired true-range multilateration. arXiv preprint arXiv:2305.16437. https://ar5iv.labs.arxiv.org/html/2305.16437
- Anonymous. (2023). 3D-aware facial landmark detection via multi-view consistent training on synthetic data. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). https://openaccess.thecvf.com
- King, D. (n.d.). dlib: A toolkit for making real-world machine learning and data analysis applications in C++ [Computer software]. GitHub. https://github.com/davisking/dlib