References
- Anqi, A.E., Usta, M., Krysko, R., Lee, J.G., Ghaffour, N. and Oztekin, A. (2019), "Numerical study of desalination by vacuum membrane distillation – Transient three-dimensional analysis", J. Membr. Sci., 596, 117609. https://doi:10.1016/j.memsci.2019.117609
- Barrat J.L. and Chiaruttini, F. (2003), "Kapitza resistance at the liquid solid interface", Mol. Phys. 101, 1605-1610. https://doi.org/10.1080/0026897031000068578
- Beeckman, J.W. (1990), "Mathematical description of the heterogeneous materials", Chem. Eng. Sci., 45(8), 2603-2610. https://doi.org/10.1016/0009-2509(90) 80148-8.
- Bocquet L. and Barrat J.L. (2007), "Flow boundary conditions from nano- to micro-scales", Soft Matter., 3, 685-693. https://doi: 10.1039/B616490K
- Chang, Y.S., Ooi, B.S., Ahmad, A.L., Leo, C.P. and Lau, W.J. (2020), "Numerical study on performance and efficiency of batch submerged vacuum membrane distillation for desalination", Chem. Eng. Res. Des.,163, 217-229. https://doi.org/10.1016/j.cherd.2020.08.031
- Choi, C.H. and Kim, C.J. (2006), "Large slip of aqueous liquid flow over a nanoengineered superhydrophobic surface", Phys. Rev. Lett., 96, 066001. https://doi.org/10.1103/PhysRevLett.96.066001.
- Cowley, A., Maynes, D., Crockett, J. (2014), "Effective temperature jump length and influence of axial conduction for thermal transport in superhydrophobic channels", Int. J. Heat Mass Transf., 79, 573-583. https://doi.org/10.1016/j.ijheatmasstransfer.2014.08.033
- Gábor R., Steffen K., Oliver S., Benjamin S., Zoltán K., Gyula V., Mehrdad E. and Peter C. (2015), "Experimental determination of liquid entry pressure (LEP) in vacuum membrane distillation for oily wastewaters", Membr. Water Treat., 6(3), 237-249. https://doi.org/10.12989/mwt.2015.6.3.237
- García-Payo, M.C. and Izquierdo-Gil M.A. (2004), "Thermal resistance technique for measuring the thermal conductivity of thin microporous membranes", J. Phys. D. Appl. Phys., 37(21) 3008-3016. https://doi.org/10.1088/0022-3727/37/21/011.
- Gonzo, E.E. (2002) "Estimating correlations for the effective thermal conductivity of granular materials", Chem. Eng. J., 90 299-302. https://doi.org/10.1016/S1385-8947(02)00121-3
- Guan, N., Liu, Z., Jiang, G., Zhang, C. and Ding, N. (2015), "Experimental and theoretical investigations on the flow resistance reduction and slip flow in super-hydrophobic micro tubes", Experim. Therm. Fl. Sci., 69, 45-57. https://doi.org/10.1016/j.expthermflusci.2015.08.003
- Hitsov, I., Maere, T., De Sitter, K., Dotremont, C. and Nopens, I. (2015), "Modelling approaches in membrane distillation: A critical review", Sep. Purif. Technol., 142, 48-64. https://doi.org/10.1016/j.seppur.2014.12.026
- Huang, F.Y.C. and Reprogle, R. (2018), "Thermal conductivity of polyvinylidene fluoride membranes for direct contact membrane distillation", Environ. Eng. Sci., 36(4). https://doi:10.1089/ees.2018.0349
- Ismail, M. S., Mohamed, A. M., Poggio, D. and Pourkashanian, M. (2021). "Direct contact membrane distillation: A sensitivity analysis and an outlook on membrane effective thermal conductivity", Journal of Membrane Science, 624, 119035. https://doi:10.1016/j.memsci.2020.119035
- Iversen, S.B. Bhatia, V.K., Dam-Johansen, K. and Jonsson, G. (1997), "Characterization of microporous membranes for use in membrane contactors", J. Membr. Sci., 130(1-2), 205-217. https://doi.org/10.1016/S0376-7388(97)00026-4.
- Karniadakis G., Beskök, A. and Aluru N. R. (2005), "Microflows and nanoflows- fundamentals and simulation", Springer Verlag, 29. https://doi.org/10.1007/0-387-28676-4
- Kim Y., Choi J., Choi Y. and Lee S. (2022), "Effect of membrane deformation on performance of vacuum assisted air gap membrane distillation (V-AGMD)", Membr. Water Treat., 13(1), 51-62. https://doi.org/10.12989/mwt.2022.13.1.051
- Kim H., Yun T., Hong S. and Lee S. (2021), "Experimental and theoretical investigation of a high performance PTFE membrane for vacuum-membrane distillation", J. Membr. Sci., 617, 118524. https://doi.org/10.1016/j.memsci.2020.118524.
- Kim, A.S. (2014), "Cylindrical cell model for direct contact membrane distillation (DCMD) of densely packed hollow fibers", J. Membr. Sci., 455, 168-186. https://doi. org/10.1016/j.memsci.2013.12.067.
- Lee, C., Choi, C.H. and Kim, C.J. (2008), "Structured surfaces for giant liquid slip", Phys. Rev. Lett., 101, 064501. https://doi.org/10.1103/PhysRevLett.101.064501.
- Liu J.G. and Y.F. Nie, (2001), "Fractal scaling of effective diffusion coefficient of solute in porous media", J. Environ. Sci. 13(2), 170-172. https://doi.org/10.1007/s11665-023-08731-6
- Liu, J., Li, X., Zhang, W., Li, B. and Liu, C. (2020), "Superhydrophobic-slip surface based heat and mass transfer mechanism in vacuum membrane distillation", J. Membr. Sci., 118505. https://doi.org/10.1016/j.memsci.2020.118505.
- Loussif, N., Orfi, J. and Omri A. (2013), "Slip flow effect on laminar convection inside micro-tubes with permeable walls", Desalin. Water Treat., 1973-1079. https://doi.org/10.1080/19443994.2012.714735
- Loussif, N. and Orfi, J. (2014), "Effect of slip velocity on air gap membrane distillation process", Membr. Water Treat., 5(1), 57-71. https://doi.org/10.12989/mwt.2014.5.1.057
- Loussif, N. and Orfi, J. (2018), "Heat and mass transfer in sweeping gas membrane distillation", Desalin. Water Treat., 131, 1-8. https://doi.org/10.5004/dwt.2018.22937
- Lu, K.J., Cheng, Z.L., Chang, J., Luo, L. and Chung, T.S. (2019), "Design of zero liquid discharge desalination (ZLDD) systems consisting of freeze desalination, membrane distillation, and crystallization powered by green energies", Desalination, 458, 66-75. https://doi.org/10.1016/j.desal.2019.02.001
- Mackie, J.S. and Meares, P. (1995), "The diffusion of electrolytes in a cation-exchange resin membrane I. Theoretical", Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 232(1191), 498-509. https://doi.org/10.1098/rspa.1955.0234.
- Maynes, D. and Crockett, J. (2014), "Apparent temperature jump and thermal transport in channels with streamwise rib and cavity featured superhydrophobic walls at constant heat flux", J. Heat Transf., 136, 011701-1. https://doi.org/10.1115/1.4025045
- Minghui, G., Zhang, G., Xin, G., Huang, H., Huang, Y., Rong, Y. and Wu, C. (2023), "Laser direct writing of rose petal biomimetic micro-bulge structure to realize superhydrophobicity and large slip length", Eng. Asp., 664, 130972. https://doi.org/10.1016/j.colsurfa.2023.130972
- Nguyen H.T., Manh Bui, H.,Wang, Y.F. and You, S.J. (2022), "Nonfluoroalkyl functionalized hydrophobic surface modifications used in membrane distillation for cheaper and more environmentally friendly applications: A mini-review", Sust. Chem. Pharm., 28, 100714. https://doi.org/10.1016/j.scp.2022.100714
- Ou, J. and Rothstein, J.P. (2005), "Direct velocity measurements of the flow past drag-reducing ultrahydrophobic surfaces", Phys. Fl., 17, 103606. https://doi.org/10.1063/1.2109867.
- Prasanna N.S., Choudhary, N., Singh, N. and Raghavarao, K.S.M.S. (2023), "Omniphobic membranes in membrane distillation for desalination applications: A mini-review", Chem. Eng. J. Adv., 14, 100486. https://doi.org/10.1016/j.ceja.2023.100486
- Roy, P., Anand, N.K. and Banerjee, D. (2013), "Liquid slip and heat transfer in rotating rectangular microchannels", Int. J. Heat Mass Transf., 62, 184-199. https://doi.org/10.1016/j.ijheatmasstransfer.2013.02.043
- Saadatbakhsh, M., Asl, S.J., Kiani, M.J., Nouri, N.M. (2020), "Slip length measurement of pdms/hydrophobic silica superhydrophobic coating for drag reduction application", Surf. Coat. Technol., 126428. https://doi.org/10.1016/j.surfcoat.2020.126428
- Safavi, M. and Tora, M. (2009), "High salinity desalination using VMD", Chem. Eng. J., 149, 191-195. https://doi.org/10.1016/j.cej.2008.10.021.
- Samadi A., Ni, T., Fontananova, E., Tang, G., Shon, H. and Zhao, S. (2023), "Engineering antiwetting hydrophobic surfaces for membrane distillation: A review", Desalination, 563, 116722. https://doi.org/10.1016/j.desal.2023.116722. S
- Sandid, A.M., Nehari D. and Nehari T. (2022), "Effective study of operating parameters on the membrane distillation processes using various materials for seawater desalination", Membr. Water Treat., 13(5), 235-243. https://doi.org/10.12989/mwt.2022.13.5.235.
- Sparenberg, M.C., Hanot, B., Molina-Fernández, C. and Luis, P. (2021), "Experimental mass transfer comparison between vacuum and direct contact membrane distillation for the concentration of carbonate solutions", Sep. Purif. Technol., 275, 119193. https://doi.org/10.1016/j.seppur.2021.119193.
- Srisurichan S., Jiraratananon R. and Fane A. (2006), "Mass transfer mechanisms and transport resistances in direct contact membrane distillation process", J. Membr. Sci., 277(1-2), 186-194. https://doi.org/10.1016/j.memsci.2005.10.028
- Suleman, M., Asif, M., Asad, J.S., Pengyu, D. and Xi, X. (2020), "A numerical study on the effects of operational parameters and membrane characteristics on the performance of vacuum membrane distillation (VMD)", Desalin. Water Treat., 183, 182-193. https://doi.org/10.5004/dwt.2020.25320
- Tjaden, B., Cooper, S.J. Brett, D.J. Kramer, D. and Shearing, P.R. (2016), "On the origin and application of the Bruggeman correlation for analysing transport phenomena in electrochemical systems", Curr. Opin. Chem. Eng., 12, 44-51. https://doi. org/10.1016/j.coche.2016.02.006.
- Tretheway, D.C. and Meinhart, C.D. (2004), "A generating mechanism for apparent fluid slip in hydrophobic microchannels", Phys. Fl., 16, 1509. https://doi.org/10.1063/1.1669400.
- Tretheway, D.C. and Meinhart, C.D. (2002), "Apparent fluid slip at hydrophobic microchannel walls", Physics of Fluids, 14, L9. https://doi.org/10.1063/1.1432696.
- Versteeg, K. and Malalasekera, W. (2007), An Introduction to Computational Fluid Dynamics: The Finite Volume Method", (2nd edition), Pearson and Prentice Hall, London. U.K.
- Xiao, B., Wang, W., Zhang, X., Long, G., Fan, J., Chen, H. and Deng, L. (2019), "A novel fractal solution for permeability and Kozeny-Carman constant of fibrous porous media made up of solid particles and porous fibers", Powder Technol., 349, 92-98. https://doi.org/10.1016/j.powtec.2019.03.028
- Zamaniasl M. (2019), "Numerical study of direct contact membrane distillation process: Effects of operating parameters on TPC and thermal efficiency", Membr. Water Treat., 10(5), 387-394. https://doi.org/10.12989/mwt.2019.10.5.387
- Zuo, G., Guan, G. and Wang, R. (2014), "Numerical modeling and optimization of vacuum membrane distillation module for low-cost water production", Desalination, 339, 1-9. https://doi.org/10.1016/j.desal.2014.02.005