DOI QR코드

DOI QR Code

A comparative study of membrane properties modeling used in vacuum membrane distillation theoretical studies

  • Nizar Loussif (Laboratory for the Study of Thermal and Energy Systems LESTE-LR99ES31, ENIM, University of Monastir) ;
  • Jamel Orfi (Mechanical Engineering Department, College of Engineering, King Saud University)
  • Received : 2024.02.08
  • Accepted : 2024.09.23
  • Published : 2025.01.25

Abstract

In this study, a theoretical model for the transport phenomena in a vacuum membrane distillation (VMD) unit used for desalination was developed. The model is based on the conservation equations for the mass, momentum, energy and species within the feed saline solution with coupled boundary conditions, as well as on the mass and energy balances on the membrane sides. The slip velocity and temperature jump boundary conditions due to the membrane's hydrophobicity were also taken into consideration. All combinations of effective thermal conductivity and tortuosity models, usually used in membrane distillation modeling are studied and discussed to show their adequacy with experimental data from the literature for PVDF, PTFE, and PP hydrophobic membranes used in VMD devices. It was found that neglecting slip velocity and temperature jump boundary conditions leads to an underestimation of the permeate flux. In addition, many effective thermal conductivity and tortuosity model combinations overestimate or underestimate the experimental data for pure water production, while others seem to fit it better.

Keywords

References

  1. Anqi, A.E., Usta, M., Krysko, R., Lee, J.G., Ghaffour, N. and Oztekin, A. (2019), "Numerical study of desalination by vacuum membrane distillation – Transient three-dimensional analysis", J. Membr. Sci., 596, 117609. https://doi:10.1016/j.memsci.2019.117609
  2. Barrat J.L. and Chiaruttini, F. (2003), "Kapitza resistance at the liquid solid interface", Mol. Phys. 101, 1605-1610. https://doi.org/10.1080/0026897031000068578
  3. Beeckman, J.W. (1990), "Mathematical description of the heterogeneous materials", Chem. Eng. Sci., 45(8), 2603-2610. https://doi.org/10.1016/0009-2509(90) 80148-8.
  4. Bocquet L. and Barrat J.L. (2007), "Flow boundary conditions from nano- to micro-scales", Soft Matter., 3, 685-693. https://doi: 10.1039/B616490K
  5. Chang, Y.S., Ooi, B.S., Ahmad, A.L., Leo, C.P. and Lau, W.J. (2020), "Numerical study on performance and efficiency of batch submerged vacuum membrane distillation for desalination", Chem. Eng. Res. Des.,163, 217-229. https://doi.org/10.1016/j.cherd.2020.08.031
  6. Choi, C.H. and Kim, C.J. (2006), "Large slip of aqueous liquid flow over a nanoengineered superhydrophobic surface", Phys. Rev. Lett., 96, 066001. https://doi.org/10.1103/PhysRevLett.96.066001.
  7. Cowley, A., Maynes, D., Crockett, J. (2014), "Effective temperature jump length and influence of axial conduction for thermal transport in superhydrophobic channels", Int. J. Heat Mass Transf., 79, 573-583. https://doi.org/10.1016/j.ijheatmasstransfer.2014.08.033
  8. Gábor R., Steffen K., Oliver S., Benjamin S., Zoltán K., Gyula V., Mehrdad E. and Peter C. (2015), "Experimental determination of liquid entry pressure (LEP) in vacuum membrane distillation for oily wastewaters", Membr. Water Treat., 6(3), 237-249. https://doi.org/10.12989/mwt.2015.6.3.237
  9. García-Payo, M.C. and Izquierdo-Gil M.A. (2004), "Thermal resistance technique for measuring the thermal conductivity of thin microporous membranes", J. Phys. D. Appl. Phys., 37(21) 3008-3016. https://doi.org/10.1088/0022-3727/37/21/011.
  10. Gonzo, E.E. (2002) "Estimating correlations for the effective thermal conductivity of granular materials", Chem. Eng. J., 90 299-302. https://doi.org/10.1016/S1385-8947(02)00121-3
  11. Guan, N., Liu, Z., Jiang, G., Zhang, C. and Ding, N. (2015), "Experimental and theoretical investigations on the flow resistance reduction and slip flow in super-hydrophobic micro tubes", Experim. Therm. Fl. Sci., 69, 45-57. https://doi.org/10.1016/j.expthermflusci.2015.08.003
  12. Hitsov, I., Maere, T., De Sitter, K., Dotremont, C. and Nopens, I. (2015), "Modelling approaches in membrane distillation: A critical review", Sep. Purif. Technol., 142, 48-64. https://doi.org/10.1016/j.seppur.2014.12.026
  13. Huang, F.Y.C. and Reprogle, R. (2018), "Thermal conductivity of polyvinylidene fluoride membranes for direct contact membrane distillation", Environ. Eng. Sci., 36(4). https://doi:10.1089/ees.2018.0349
  14. Ismail, M. S., Mohamed, A. M., Poggio, D. and Pourkashanian, M. (2021). "Direct contact membrane distillation: A sensitivity analysis and an outlook on membrane effective thermal conductivity", Journal of Membrane Science, 624, 119035. https://doi:10.1016/j.memsci.2020.119035
  15. Iversen, S.B. Bhatia, V.K., Dam-Johansen, K. and Jonsson, G. (1997), "Characterization of microporous membranes for use in membrane contactors", J. Membr. Sci., 130(1-2), 205-217. https://doi.org/10.1016/S0376-7388(97)00026-4.
  16. Karniadakis G., Beskök, A. and Aluru N. R. (2005), "Microflows and nanoflows- fundamentals and simulation", Springer Verlag, 29. https://doi.org/10.1007/0-387-28676-4
  17. Kim Y., Choi J., Choi Y. and Lee S. (2022), "Effect of membrane deformation on performance of vacuum assisted air gap membrane distillation (V-AGMD)", Membr. Water Treat., 13(1), 51-62. https://doi.org/10.12989/mwt.2022.13.1.051
  18. Kim H., Yun T., Hong S. and Lee S. (2021), "Experimental and theoretical investigation of a high performance PTFE membrane for vacuum-membrane distillation", J. Membr. Sci., 617, 118524. https://doi.org/10.1016/j.memsci.2020.118524.
  19. Kim, A.S. (2014), "Cylindrical cell model for direct contact membrane distillation (DCMD) of densely packed hollow fibers", J. Membr. Sci., 455, 168-186. https://doi. org/10.1016/j.memsci.2013.12.067.
  20. Lee, C., Choi, C.H. and Kim, C.J. (2008), "Structured surfaces for giant liquid slip", Phys. Rev. Lett., 101, 064501. https://doi.org/10.1103/PhysRevLett.101.064501.
  21. Liu J.G. and Y.F. Nie, (2001), "Fractal scaling of effective diffusion coefficient of solute in porous media", J. Environ. Sci. 13(2), 170-172. https://doi.org/10.1007/s11665-023-08731-6
  22. Liu, J., Li, X., Zhang, W., Li, B. and Liu, C. (2020), "Superhydrophobic-slip surface based heat and mass transfer mechanism in vacuum membrane distillation", J. Membr. Sci., 118505. https://doi.org/10.1016/j.memsci.2020.118505.
  23. Loussif, N., Orfi, J. and Omri A. (2013), "Slip flow effect on laminar convection inside micro-tubes with permeable walls", Desalin. Water Treat., 1973-1079. https://doi.org/10.1080/19443994.2012.714735
  24. Loussif, N. and Orfi, J. (2014), "Effect of slip velocity on air gap membrane distillation process", Membr. Water Treat., 5(1), 57-71. https://doi.org/10.12989/mwt.2014.5.1.057
  25. Loussif, N. and Orfi, J. (2018), "Heat and mass transfer in sweeping gas membrane distillation", Desalin. Water Treat., 131, 1-8. https://doi.org/10.5004/dwt.2018.22937
  26. Lu, K.J., Cheng, Z.L., Chang, J., Luo, L. and Chung, T.S. (2019), "Design of zero liquid discharge desalination (ZLDD) systems consisting of freeze desalination, membrane distillation, and crystallization powered by green energies", Desalination, 458, 66-75. https://doi.org/10.1016/j.desal.2019.02.001
  27. Mackie, J.S. and Meares, P. (1995), "The diffusion of electrolytes in a cation-exchange resin membrane I. Theoretical", Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 232(1191), 498-509. https://doi.org/10.1098/rspa.1955.0234.
  28. Maynes, D. and Crockett, J. (2014), "Apparent temperature jump and thermal transport in channels with streamwise rib and cavity featured superhydrophobic walls at constant heat flux", J. Heat Transf., 136, 011701-1. https://doi.org/10.1115/1.4025045
  29. Minghui, G., Zhang, G., Xin, G., Huang, H., Huang, Y., Rong, Y. and Wu, C. (2023), "Laser direct writing of rose petal biomimetic micro-bulge structure to realize superhydrophobicity and large slip length", Eng. Asp., 664, 130972. https://doi.org/10.1016/j.colsurfa.2023.130972
  30. Nguyen H.T., Manh Bui, H.,Wang, Y.F. and You, S.J. (2022), "Nonfluoroalkyl functionalized hydrophobic surface modifications used in membrane distillation for cheaper and more environmentally friendly applications: A mini-review", Sust. Chem. Pharm., 28, 100714. https://doi.org/10.1016/j.scp.2022.100714
  31. Ou, J. and Rothstein, J.P. (2005), "Direct velocity measurements of the flow past drag-reducing ultrahydrophobic surfaces", Phys. Fl., 17, 103606. https://doi.org/10.1063/1.2109867.
  32. Prasanna N.S., Choudhary, N., Singh, N. and Raghavarao, K.S.M.S. (2023), "Omniphobic membranes in membrane distillation for desalination applications: A mini-review", Chem. Eng. J. Adv., 14, 100486. https://doi.org/10.1016/j.ceja.2023.100486
  33. Roy, P., Anand, N.K. and Banerjee, D. (2013), "Liquid slip and heat transfer in rotating rectangular microchannels", Int. J. Heat Mass Transf., 62, 184-199. https://doi.org/10.1016/j.ijheatmasstransfer.2013.02.043
  34. Saadatbakhsh, M., Asl, S.J., Kiani, M.J., Nouri, N.M. (2020), "Slip length measurement of pdms/hydrophobic silica superhydrophobic coating for drag reduction application", Surf. Coat. Technol., 126428. https://doi.org/10.1016/j.surfcoat.2020.126428
  35. Safavi, M. and Tora, M. (2009), "High salinity desalination using VMD", Chem. Eng. J., 149, 191-195. https://doi.org/10.1016/j.cej.2008.10.021.
  36. Samadi A., Ni, T., Fontananova, E., Tang, G., Shon, H. and Zhao, S. (2023), "Engineering antiwetting hydrophobic surfaces for membrane distillation: A review", Desalination, 563, 116722. https://doi.org/10.1016/j.desal.2023.116722. S
  37. Sandid, A.M., Nehari D. and Nehari T. (2022), "Effective study of operating parameters on the membrane distillation processes using various materials for seawater desalination", Membr. Water Treat., 13(5), 235-243. https://doi.org/10.12989/mwt.2022.13.5.235.
  38. Sparenberg, M.C., Hanot, B., Molina-Fernández, C. and Luis, P. (2021), "Experimental mass transfer comparison between vacuum and direct contact membrane distillation for the concentration of carbonate solutions", Sep. Purif. Technol., 275, 119193. https://doi.org/10.1016/j.seppur.2021.119193.
  39. Srisurichan S., Jiraratananon R. and Fane A. (2006), "Mass transfer mechanisms and transport resistances in direct contact membrane distillation process", J. Membr. Sci., 277(1-2), 186-194. https://doi.org/10.1016/j.memsci.2005.10.028
  40. Suleman, M., Asif, M., Asad, J.S., Pengyu, D. and Xi, X. (2020), "A numerical study on the effects of operational parameters and membrane characteristics on the performance of vacuum membrane distillation (VMD)", Desalin. Water Treat., 183, 182-193. https://doi.org/10.5004/dwt.2020.25320
  41. Tjaden, B., Cooper, S.J. Brett, D.J. Kramer, D. and Shearing, P.R. (2016), "On the origin and application of the Bruggeman correlation for analysing transport phenomena in electrochemical systems", Curr. Opin. Chem. Eng., 12, 44-51. https://doi. org/10.1016/j.coche.2016.02.006.
  42. Tretheway, D.C. and Meinhart, C.D. (2004), "A generating mechanism for apparent fluid slip in hydrophobic microchannels", Phys. Fl., 16, 1509. https://doi.org/10.1063/1.1669400.
  43. Tretheway, D.C. and Meinhart, C.D. (2002), "Apparent fluid slip at hydrophobic microchannel walls", Physics of Fluids, 14, L9. https://doi.org/10.1063/1.1432696.
  44. Versteeg, K. and Malalasekera, W. (2007), An Introduction to Computational Fluid Dynamics: The Finite Volume Method", (2nd edition), Pearson and Prentice Hall, London. U.K.
  45. Xiao, B., Wang, W., Zhang, X., Long, G., Fan, J., Chen, H. and Deng, L. (2019), "A novel fractal solution for permeability and Kozeny-Carman constant of fibrous porous media made up of solid particles and porous fibers", Powder Technol., 349, 92-98. https://doi.org/10.1016/j.powtec.2019.03.028
  46. Zamaniasl M. (2019), "Numerical study of direct contact membrane distillation process: Effects of operating parameters on TPC and thermal efficiency", Membr. Water Treat., 10(5), 387-394. https://doi.org/10.12989/mwt.2019.10.5.387
  47. Zuo, G., Guan, G. and Wang, R. (2014), "Numerical modeling and optimization of vacuum membrane distillation module for low-cost water production", Desalination, 339, 1-9. https://doi.org/10.1016/j.desal.2014.02.005