References
- COP16 Overview: Biodiversity Protection and the Oceans. Name of Site or Board. https://globalgreens.org/kor/cbd-brief-oceans/
- Park. H. K. (2018). Air pollution and climate change: Effects on asthmatic patients. Allergy Asthma Respir Dis, 6(2), 79-84. DOI : 10.4168/aard.2018.6.2.79
- Jung. Y. J. (2023). A Study on Changes in Disease Patterns and Countermeasures due to Global Warming. Jour. of KoCon.a, 23(8), 426-438. DOI : 10.5392/JKCA.2023.23.08.426
- Jang. J. Y. (2009). Climate change, global warming's impact on human health. Horizon of knowledge, 6, 159-175.
- Cho H. M. (2012). Climate change and air pollution effect on respiratory and allergic disease in Korea. Korea Centers for Disease Control and Prevention, 1-7.
- Erasmo. C. & Wilfrido. R. (2007). Wind speed forecasting in the South Coast of Oaxaca, Mexico. Renewable Energy, 32(12), 2116-2128. DOI : 10.1016/j.renene.2006.10.005
- Cadenas, E., Jaramillo, O. A., & Rivera, W. (2010). Analysis and forecasting of wind velocity in chetumal, quintana roo, using the single exponential smoothing method. Renewable Energy, 35(5), 925-930. DOI : 10.1016/j.renene.2009.10.037
- Jeong. C. S., Kim. M. M. & Heo. J. H. (2008). Analysis of Climate Change using Stochastical Methods (based on precipitation data). 2008 Korea Water Resources Association, 1001-1006.
- Song. K. Y., Bang. C. H., Park. Y. S. & Choi. Y. J. (2012). Research and Analysis for Developing of Evaluation on the Site Selection of Wind Farm. Journal of the Wind Engineering Institute of Korea, 16(1), 3-12.
- Saurabh. S. S., Hamidreza. Z., Om. M. & Paras. M. (2010). A review of wind power and wind speed forecasting methods with different time horizons. North American Power Symposium 2010, 1-8. DOI : 10.1109/NAPS.2010.5619586.
- Choi. S. H. (2024). A Study on Trend Using Time Series Data. Advanced Industrial SCIence, 3(1). 17-22. DOI : 10.23153/AI-Science.2024.3.1.017
- Han, K. H., & Na, W. S. (2024). Forecasting Prices of Major Agricultural Products by Temperature and Precipitation. Journal of Advanced Technology Convergence, 3(2), 17-23. DOI : 10.23152/JATC.2024.03.02.017
- Lee, J., Han, H., & Yoon, S. (2020). Air passenger demand forecasting for the Incheon airport using time series models. Journal of Digital Convergence, 18(12), 87-95. DOI : 10.14400/JDC.2020.18.12.087
- Choudhary, A., Jain, P., & Prajesh, A. (2023, February). Wind Power Forecasting Using Deep Learning Method: A Review. In 2023 1st International Conference on Intelligent Computing and Research Trends (ICRT) (pp. 1-6). IEEE. DOI : 10.1109/ICRT57042.2023.10146688
- Liu, X., Lin, Z., & Feng, Z. (2021). Short-term offshore wind speed forecast by seasonal ARIMA-A comparison against GRU and LSTM. Energy, 227, 120492. DOI : 10.1016/j.energy.2021.120492