Acknowledgement
This work was supported by the Semiconductor major track (Materials, Components, Equipment) project supported by the Ministry of Education and the Ministry of Trade, Industry and Energy (No. P0022196).
References
- Zhao, H., & Ravindra, N. M. (1989). Temperature Dependent Current-Voltage Characteristics in Thin SiO₂ Films. Journal of Materials Research, 159, 189–195. DOI : 10.1557/PROC-159-217
- Hegedüs, N., Balázsi, K., & Balázsi, C. (2021). Silicon Nitride and Hydrogenated Silicon Nitride Thin Films: A Review of Fabrication Methods and Applications. Materials, 14, 5658–5674. DOI : 10.3390/ma14195658
- Black, L. E., & McIntosh, K. R. (2012). Surface Passivation of c-Si by Atmospheric Pressure Chemical Vapor Deposition of Al₂O₃. Applied Physics Letters, 100, 1–4. DOI : 10.1063/1.3695145
- Lien, S. Y., & Zhu, W. Z. (2022). Crystallinity Effect on Electrical Properties of PEALD–HfO₂Thin Films Prepared by Different Substrate Temperatures. Nanomaterials, 12, 3890–3897. DOI : 10.3390/nano12113890
- Bannunah, A. M. (2023). Biomedical Applications of Zirconia-Based Nanomaterials: Challenges and Future Perspectives. Molecules, 28, 5428–5436. DOI : 10.3390/molecules28135428
- Hilton, M. R., Vandentop, G. J., Salmeron, M., & Somorjai, G. A. (1987). TiN coatings on M2 steel produced by plasma-assisted chemical vapor deposition. Thin Solid Films, 154(1-2), 377-386. DOI : 10.1016/0040-6090(87)90446-4
- Park, H. H. (2021). Inorganic materials by atomic layer deposition for perovskite solar cells. Nanomaterials, 11(1), 88. DOI : 10.3390/nano11010088
- Thiessen, A. N., Ha, M., Hooper, R. W., Yu, H., Oliynyk, A. O., Veinot, J. G., & Michaelis, V. K. (2019). Silicon nanoparticles: are they crystalline from the core to the surface?. Chemistry of Materials, 31(3), 678-688. DOI : 10.1021/acs.chemmater.8b04041
- Signorello, G., Lörtscher, E., Khomyakov, P. A., Karg, S., Dheeraj, D. L., Gotsmann, B., ... & Riel, H. (2014). Inducing a direct-to-pseudodirect bandgap transition in wurtzite GaAs nanowires with uniaxial stress. Nature communications, 5(1), 3655. DOI : 10.1038/ncomms4655
- Hou, T., Li, D., Qu, Y., Hao, Y., & Lai, Y. (2023). The Role of Carbon in Metal–Organic Chemical Vapor Deposition-Grown MoS2 Films. Materials, 16(21), 7030. DOI : 10.3390/ma16207030
- Ginley, T. P., Wang, Y., & Law, S. (2016). Topological insulator film growth by molecular beam epitaxy: A review. Crystals, 6(11), 154. DOI : 10.3390/cryst6120154
- P. Barquinha, R. Branquinho, R. Martins & E. Fortunato (2019). Tailoring IGZO Composition for Enhanced Fully Solution-Based Thin Film Transistors. Nanomaterials, 9, 1273–1285. DOI : 10.3390/nano9091273
- Li, J., Smith, C., & Wang, P. (2021). Copper Oxide Resistive Switching Memory for E-Textiles. AIP Advances, 38, 1203–1210.
- Hernandez, O., Mendizábal, L., & Barriga, J.(2021). Indium Tin Oxide Thin Film Deposition by Magnetron Sputtering at Room Temperature for the Manufacturing of Efficient Transparent Heaters. Coatings, 11(1), 92–100. DOI : 10.3390/coatings11010092
- Baptista, A., Silva, F., Porteiro, J., Míguez, J., & Pinto, G. (2018). Sputtering Physical Vapour Deposition (PVD) Coatings: A Critical Review on Process Improvement and Market Trend Demands. Coatings, 8, 402–410. DOI : 10.3390/coatings8110402
- Ronsin, O. J., Jang, D., Egelhaaf, H. J., Brabec, C. J., & Harting, J. (2020). A Phase-Field Model for the Evaporation of Thin Film Mixtures. Physical Chemistry Chemical Physics, 22, 6638–6652. DOI : 10.1039/D0CP00589F
- Yao, W., He, H., & Wang, F. (2024). CTAB-Modulated Electroplating of Copper Micropillar Arrays for Non-Enzymatic Glucose Sensing with Improved Sensitivity. Sensors, 24, 1603–1610. DOI : 110.3390/s24031603