DOI QR코드

DOI QR Code

Electrical and optical properties of copper electroplating formed on polished N-type silicon

연마된 N형 실리콘상에 형성된 구리 전기 도금의 전기 및 광학적인 특성

  • Kyoung-Bo Kim (Department of Metallurgical and Materials Engineering, Inha Technical College) ;
  • Sungki Min (STC Tech) ;
  • Jongpil Lee (Department of Electrical and Electronic Engineering, Jungwon University) ;
  • Moojin Kim (Department of IoT Electronic Engineering, Kangnam University)
  • Received : 2024.12.03
  • Accepted : 2025.01.20
  • Published : 2025.01.30

Abstract

We investigated the behavior on the surface by forming a copper thin film on an N-type wafer using an electroplating method. To do this, we removed the natural oxide film on the surface, and roughened the surface by polishing the wafer with sandpaper to facilitate nucleation during electroplating. Then, we fabricated samples that were plated for 10, 20, 30, 60, and 120 s. The surface resistance was analyzed for each sample. In order to investigate the reaction between copper ions formed on the polished sample surface and light, we measured the regular and diffuse reflections. Through this study, the feasibility of applying a copper metal coating process using a plating method in semiconductor fabrication was evaluated.

본 연구에서는 전기 도금법을 이용하여 N형 웨이퍼에 구리 박막을 형성하여 표면의 거동을 조사하였다. 이를 위해 표면의 자연 산화막을 제거하고, 전기 도금 시 핵 생성을 용이하게 하기 위해 사포로 웨이퍼를 연마하여 표면을 거칠게 하였다. 그런 다음 10, 20, 30, 60, 120초 동안 도금한 샘플을 제작하였다. 각 샘플에 대한 표면 저항을 분석한 결과, 30초 이후에는 저항 값에 거의 변화가 없음을 확인하였다. 연마된 샘플 표면에 형성된 구리 이온과 빛 사이의 반응을 조사하기 위해 규칙적 반사와 확산 반사를 측정하였다. 규칙적 반사와 확산 반사 모두 파장이 200nm에서 600nm로 증가함에 따라 모든 샘플에서 반사율이 감소하는 경향을 보였으며, 코팅 시간이 길어질수록 반사율 값이 높아졌다. 이를 통해 반도체 공정에 도금 방법으로 실리콘 기판상에 금속 구리 코팅 공정 적용 가능성을 검토하였다.

Keywords

Acknowledgement

This work was supported by the Semiconductor major track (Materials, Components, Equipment) project supported by the Ministry of Education and the Ministry of Trade, Industry and Energy (No. P0022196).

References

  1. Zhao, H., & Ravindra, N. M. (1989). Temperature Dependent Current-Voltage Characteristics in Thin SiO₂ Films. Journal of Materials Research, 159, 189–195. DOI : 10.1557/PROC-159-217
  2. Hegedüs, N., Balázsi, K., & Balázsi, C. (2021). Silicon Nitride and Hydrogenated Silicon Nitride Thin Films: A Review of Fabrication Methods and Applications. Materials, 14, 5658–5674. DOI : 10.3390/ma14195658
  3. Black, L. E., & McIntosh, K. R. (2012). Surface Passivation of c-Si by Atmospheric Pressure Chemical Vapor Deposition of Al₂O₃. Applied Physics Letters, 100, 1–4. DOI : 10.1063/1.3695145
  4. Lien, S. Y., & Zhu, W. Z. (2022). Crystallinity Effect on Electrical Properties of PEALD–HfO₂Thin Films Prepared by Different Substrate Temperatures. Nanomaterials, 12, 3890–3897. DOI : 10.3390/nano12113890
  5. Bannunah, A. M. (2023). Biomedical Applications of Zirconia-Based Nanomaterials: Challenges and Future Perspectives. Molecules, 28, 5428–5436. DOI : 10.3390/molecules28135428
  6. Hilton, M. R., Vandentop, G. J., Salmeron, M., & Somorjai, G. A. (1987). TiN coatings on M2 steel produced by plasma-assisted chemical vapor deposition. Thin Solid Films, 154(1-2), 377-386. DOI : 10.1016/0040-6090(87)90446-4
  7. Park, H. H. (2021). Inorganic materials by atomic layer deposition for perovskite solar cells. Nanomaterials, 11(1), 88. DOI : 10.3390/nano11010088
  8. Thiessen, A. N., Ha, M., Hooper, R. W., Yu, H., Oliynyk, A. O., Veinot, J. G., & Michaelis, V. K. (2019). Silicon nanoparticles: are they crystalline from the core to the surface?. Chemistry of Materials, 31(3), 678-688. DOI : 10.1021/acs.chemmater.8b04041
  9. Signorello, G., Lörtscher, E., Khomyakov, P. A., Karg, S., Dheeraj, D. L., Gotsmann, B., ... & Riel, H. (2014). Inducing a direct-to-pseudodirect bandgap transition in wurtzite GaAs nanowires with uniaxial stress. Nature communications, 5(1), 3655. DOI : 10.1038/ncomms4655
  10. Hou, T., Li, D., Qu, Y., Hao, Y., & Lai, Y. (2023). The Role of Carbon in Metal–Organic Chemical Vapor Deposition-Grown MoS2 Films. Materials, 16(21), 7030. DOI : 10.3390/ma16207030
  11. Ginley, T. P., Wang, Y., & Law, S. (2016). Topological insulator film growth by molecular beam epitaxy: A review. Crystals, 6(11), 154. DOI : 10.3390/cryst6120154
  12. P. Barquinha, R. Branquinho, R. Martins & E. Fortunato (2019). Tailoring IGZO Composition for Enhanced Fully Solution-Based Thin Film Transistors. Nanomaterials, 9, 1273–1285. DOI : 10.3390/nano9091273
  13. Li, J., Smith, C., & Wang, P. (2021). Copper Oxide Resistive Switching Memory for E-Textiles. AIP Advances, 38, 1203–1210.
  14. Hernandez, O., Mendizábal, L., & Barriga, J.(2021). Indium Tin Oxide Thin Film Deposition by Magnetron Sputtering at Room Temperature for the Manufacturing of Efficient Transparent Heaters. Coatings, 11(1), 92–100. DOI : 10.3390/coatings11010092
  15. Baptista, A., Silva, F., Porteiro, J., Míguez, J., & Pinto, G. (2018). Sputtering Physical Vapour Deposition (PVD) Coatings: A Critical Review on Process Improvement and Market Trend Demands. Coatings, 8, 402–410. DOI : 10.3390/coatings8110402
  16. Ronsin, O. J., Jang, D., Egelhaaf, H. J., Brabec, C. J., & Harting, J. (2020). A Phase-Field Model for the Evaporation of Thin Film Mixtures. Physical Chemistry Chemical Physics, 22, 6638–6652. DOI : 10.1039/D0CP00589F
  17. Yao, W., He, H., & Wang, F. (2024). CTAB-Modulated Electroplating of Copper Micropillar Arrays for Non-Enzymatic Glucose Sensing with Improved Sensitivity. Sensors, 24, 1603–1610. DOI : 110.3390/s24031603