Acknowledgement
본 연구는 2023년도 산업통상자원부 한국에너지기술평가원 신재생에너지핵심기술개발사업(과제번호 : RS-2023-00236715)과 2022년도 중소벤처기업부 중소기업 Net-Zero 기술혁신개발사업(과제번호 : RS- 2022-00166698)의 일환으로 수행되었습니다.
References
- O. Ellabban, H. Abu-Rub, F. Blaabjerg, Renewable energy resources: Current status, future prospects and their enabling technology, Renew. Sustain. Energy Rev. 39, 748-764 (2014). https://doi.org/10.1016/j.rser.2014.07.113
- Adam B. Jaffe, Richard G. Newell, and Robert N. Stavins, Energy-Efficient Technologies and Climate Change Policies: Issues and Evidence. Resources for the Future. (19), (1999).
- M. I. Ali, M. Allah, S. Dost, N. Ullah, IoT based smart solar PV monitoring system; A Cost Effective and reliable solution, Sukkur IBA J. Comput. Math. Sci. 6(2) 8-14 (2022). https://doi.org/10.30537/sjcms.v6i2.1160
- P. Eiffert, G. Kiss, Building-integrated photovoltaic designs for commercial and institutional structures: A sourcebook for architects. National Renewable Energy Laboratory (NREL) (2000).
- S. Philipps, W. Warmuth, Photovoltaics Report. Fraunhofer Institute for Solar Energy Systems (2024).
- REN21. Renewables 2022 Global Status Report. (2022)
- W. Oh, H. Choi, Case study on MLPE application in solar power generation systems. J. Korean Soc. Sol. Energy. 16(2), 39-44 (2018).
- J. Eum, H. J. Choi, Analysis of power enhancement in facade-BIPV systems through module-level power optimizer: evaluating performance under shading conditions, Buildings. 14, 3850 (2024).
- D. Riley, J. Stein, C. Carmignani, Performance of Bifacial PV Modules with MLPE vs. String Inverters, 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EUPVSEC), 1745-1748 (2018).
- C. Deline, B. Marion, J. Granata, and S. Gonzalez, A Performance and Economic Analysis of Distributed Power Electronics in Photovoltaic Systems, National Renewable Energy Laboratory (NREL), Tech. Rep. NREL/TP-5200-50003, Jan. (2011).
- J. H. Ahn, J. Dai, S. J. Park, C. S. Jin, A Study on Nonlinear Control Techniques of Module Level Power Electronics for Optimization of Photovoltaic Power Generation, J. Korea Acad.-Ind. Coop. Soc. 25(7), 23-31 (2024). https://doi.org/10.5762/KAIS.2024.25.7.23
- G. Chu, H. Wen, Y. Hu, L. Jiang, Y. Yang, Y. Wang, Low-complexity power balancing point-based optimization for photovoltaic differential power processing, IEEE Transactions on Power Electronics, Vol. 35, No. 10 (2020).
- P. S. Shenoy, K. A. Kim, B. B. Johnson, P. T. Krein, Differential Power Processing for Increased Energy Production and Reliability of Photovoltaic Systems. IEEE Tran. Power Electron. 28(6), 2968-2979 (2013). https://doi.org/10.1109/TPEL.2012.2211082
- S. Sarwar, M. Y. Javed, M. H. Jaffery, M. S. Ashraf, M. T. Naveed, M. A. Hafeez, Modular Level Power Electronics (MLPE) Based Distributed PV System for Partial Shaded Conditions. MDPI. 15(13), 4797 (2022).
- B. C. Park, D. H. Seo, S. H. Lim, The novel development of MLPE(Module Level Power Electronics) for BIPV includes Maximum Power Transfer and Emergency Shutdown. 2023 Korean Institute of Electrical Engineers, Electrical Installation Division Spring Conference Proceedings, 258-259 (2023).
- K. Sinapis, G. Litjens, M. van den Donker, W. Folkerts, W. van Sark, Outdoor characterization and comparison of string and MLPE under clear and partially shaded conditions. Energy Sci. Eng. 3(6), 510-519 (2015). https://doi.org/10.1002/ese3.97
- J. Flicker, G. Tamizhmani, M. K. Moorthy, R. Thiagarajan, R. Ayyanar, Accelerated testing of module-level power electronics for long-term reliability. IEEE J. Photovolt. 7(1), 259-268 (2017). https://doi.org/10.1109/JPHOTOV.2016.2621339