DOI QR코드

DOI QR Code

The relationship between aging and inhibition ability: Evidence from a web-based Number Stroop task

노화와 억제 능력의 관계: 웹기반 숫자 스트룹 과제로부터의 증거

  • Jini Tae (School of Humanities and Social Sciences, Gwangju Institute of Science and Technology) ;
  • Yoonhyoung Lee (Department of Psychology, Yeungnam University) ;
  • Wonil Choi (School of Humanities and Social Sciences, Gwangju Institute of Science and Technology)
  • 태진이 (광주과학기술원 인문사회과학부) ;
  • 이윤형 (영남대학교 심리학과) ;
  • 최원일 (광주과학기술원 인문사회과학부)
  • Received : 2025.01.12
  • Accepted : 2025.03.01
  • Published : 2025.03.31

Abstract

The aim of this study is to examine age-related differences in inhibitory control using a Number Stroop task. Participants, ranging from 20 to 69 years old, were presented with number strings composed of digits from 1 to 4, displayed in quantities ranging from one to four (e.g., "33" or "333"). The stimuli were categorized into congruent (e.g., "333") and incongruent conditions (e.g., "33"). In the congruent condition, the number of digits and the digit itself matched, leading to minimize interference, whereas in the incongruent condition, the number of digits and the digit itself differed, requiring conscious suppression of distractor interference. When a number string was presented, participants were asked to report the number of digits, while ignoring their numerical meaning. The results showed that response times increased with age, and responses were slower in incongruent trials compared to congruent trials. A significant interaction between age and the Stroop effect was observed, particularly between individuals in their forties and fifties. Specifically, while there was no significant difference in response times between these age groups in the incongruent conditions, participants in their fifties exhibited slower response times than those in their forties in the congruent conditions. This suggests that as cognitive abilities decline with aging, individuals in their fifties adopt a more cautious approach even in the easier, congruent trials. Furthermore, analyses using the diffusion model for conflict tasks (DMC) revealed that older participants tended to employ more cautious strategies during task performance. This study demonstrates that declines in inhibitory control become more pronounced starting in the fifties, leading to a shift toward more cautious task execution strategies, which is particularly evident in easier task conditions. Additionally, by utilizing experimental data from various age groups, the modeling analysis provided insights into how task performance strategies change across different age groups, allowing for a more comprehensive understanding of age-related changes in inhibitory task performance.

본 연구의 목적은 방해 자극에 대한 억제 능력을 측정하는 숫자 스트룹(Number Stroop) 과제를 사용하여 연령에 따른 억제 능력의 차이를 알아보는 것이다. 참가자들은 20세부터 69세까지의 성인들로, 이 과제의 자극으로는 1에서 4까지의 숫자들이 1개에서 4개 사이로 구성된 숫자열이 제시되었다. 제시되는 숫자열은 일치 조건과 불일치 조건으로 구분되는데, 일치 조건(예: 333)은 숫자열을 구성하고 있는 숫자와 자극의 개수가 같은 자극으로 두 개의 정보가 같으므로 간섭이 최소화된다. 이에 반해 자극의 숫자와 개수가 다른 불일치 조건(예: 33)은 의식적으로 방해 자극의 영향을 억제하면서 목표 정보에 주의를 두어야 하므로 일치 조건에 비해 의식적인 억제 정보처리가 요구된다. 이 실험에서 참가자들은 제시되는 숫자열(예: 33)을 보고 자극의 속성(예: 3)이 아니라 자극의 개수(예: 두 개)를 최대한 빠르고 정확하게 보고하는 과제를 수행했다. 연구 결과, 연령이 증가할수록 과제 수행 시간은 늘어났고, 일치 조건에 비해 불일치 조건의 수행 시간이 느려졌다. 참가자의 나이와 스트룹 효과의 크기 간의 상호작용 효과는 40대와 50대 사이에서만 유의미했다. 보다 구체적으로 불일치 조건에서는 두 연령 집단의 반응시간 차이가 없었던데 반해, 일치 조건에서는 50대가 40대에 비해 느리게 반응하는 특성이 관찰되었다. 이는 50대 성인들이 노화로 인해 인지 능력이 저하됨에 따라 상대적으로 쉬운 일치 조건에서도 더 신중하게 판단하고 있음을 시사한다. 또한 갈등 과제를 위한 확산 모형(DMC)을 이용한 분석결과에서도 나이가 들수록 과제 수행 상황에서 더욱 신중한 전략을 취하는 경향이 나타났다. 본 연구는 노화에 따른 억제 능력의 감소가 50대부터 두드러지며, 이러한 인지 변화가 과제 수행 시 신중한 전략을 사용하도록 하는데, 이는 일치 조건과 같이 더 쉬운 과제 상황에서 뚜렷이 나타날 수 있음을 보여주었다. 나아가, 다양한 연령대의 참가자가 참여한 실험 데이터를 바탕으로 한 모델링 분석을 통해 연령 집단별 과제 수행 전략의 변화를 확인함으로써, 노화에 따른 억제 과제 수행 방식의 변화를 종합적으로 이해할 수 있었다.

Keywords

Acknowledgement

이 논문은 대한민국 교육부(NRF-2020S1A3A2A02103899) 지원에 의해 수행되었음.

References

  1. 김선경, 정유진, & 이혜원 (2015). 목표유지가 청년과 노인의 주의에 미치는 영향. 한국노년학, 35(3), 643-658.
  2. 이혜원, 김선경, 이고은, 정유진, & 박지윤 (2012). 연령에 따른 인지 변화 양상. 한국심리학회지: 인지 및 생물, 24(2), 127-148. https://doi.org/10.22172/COGBIO.2012.24.2.003
  3. 태진이, 김태훈, & 최원일 (2021). 웹기반 실험을 통한 음운 및 철자 점화 효과의 재검증. 언어, 46(4), 1233-1250.
  4. 태진이, 백현아, 이윤형, & 이윤형 (2022). 전환 과제 수행에서 나타난 노화와 인지 통제 능력의 관계: 웹기반 실험 연구로부터의 증거. 한국심리학회지: 일반, 41(5), 491-517. https://doi.org/10.22257/KJP.2022.12.41.5.491
  5. 태진이, 최원일, & 이윤형 (2023). 웹기반 실험을 통해 살펴본 연령에 따른 긍정정서 편향과 자기연령 효과의 차이. Journal of Korean Data Analysis Society, 25(3), 1145-1159. https://doi.org/10.37727/jkdas.2023.25.3.1145
  6. Anwyl-Irvine, A. L., Massonnié, J., Flitton, A., Kirkham, N., & Evershed, J. K. (2020). Gorilla in our midst: An online behavioral experiment builder. Behavior Research Methods, 52(1), 388-407. https://doi.org/10.3758/s13428-019-01237-x
  7. Aschenbrenner, A. J., & Balota, D. A. (2015). Interactive effects of working memory and trial history on Stroop interference in cognitively healthy aging. Psychology and Aging, 30(1), 1-8. https://doi.org/10.1037/pag0000012
  8. Aschenbrenner, A. J., & Balota, D. A. (2017). Dynamic adjustments of attentional control in healthy aging. Psychology and Aging, 32(1), 1-15. https://doi.org/10.1037/pag0000148
  9. Baltes, M. M., & Lang, F. R. (1997). Everyday functioning and successful aging: The impact of resources. Psychology and Aging, 12(3), 433-443. https://doi.org/10.1037/0882-7974.12.3.433
  10. Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting Linear Mixed-Effects Models Using lme4. Journal of Statistical Software, 67(1), 1-48. https://doi.org/10.18637/jss.v067.i01
  11. Borella, E., Carretti, B., & De Beni, R. (2008). Working memory and inhibition across the adult life-span. Acta psychologica, 128(1), 33-44. https://doi.org/10.1016/j.actpsy.2007.09.008
  12. Chetverikov, A., & Upravitelev, P. (2016). Online versus offline: The Web as a medium for response time data collection. Behavior Research Methods, 48, 1086-1099. https://doi.org/10.3758/s13428-015-0632-x
  13. Fechner, H. B., Pachur, T., & Schooler, L. J. (2019). How does aging impact decision making? The contribution of cognitive decline and strategic compensation revealed in a cognitive architecture. Journal of Experimental Psychology: Learning, Memory, and Cognition, 45(9), 1634-1663. https://doi.org/10.1037/xlm0000661
  14. Ferguson, H. J., Brunsdon, V. E., & Bradford, E. E. (2021). The developmental trajectories of executive function from adolescence to old age. Scientific reports, 11(1), 1382. https://doi.org/10.1038/s41598-020-80866-1
  15. Fernandez-Duque, D., & Black, S. E. (2006). Attentional networks in normal aging and Alzheimer's disease. Neuropsychology, 20(2), 133-143. https://doi.org/10.1037/0894-4105.20.2.133
  16. Ferreira, D., Correia, R., Nieto, A., Machado, A., Molina, Y., & Barroso, J. (2015). Cognitive decline before the age of 50 can be detected with sensitive cognitive measures. Psicothema, 27(3), 216-222. https://doi.org/10.7334/psicothema2014.192
  17. Gonzalez-Burgos, L., Hernández-Cabrera, J. A., Westman, E., Barroso, J., & Ferreira, D. (2019). Cognitive compensatory mechanisms in normal aging: a study on verbal fluency and the contribution of other cognitive functions. Aging (Albany NY), 11(12), 4090. https://doi.org/10.18632/aging.102040
  18. Hasher, L., & Zacks, R. T. (1988). Working memory, comprehension, and aging: A review and a new view. In G. H. Bower (Ed.), The psychology of learning and motivation (Vol. 22, pp. 193-225). San Diego, CA: Academic Press.
  19. Hasher, L., & Zacks, R. T. (1988). Working memory, comprehension, and aging: A review and a new view. Psychology of learning and motivation, 22, 193-225. https://doi.org/10.1016/S0079-7421(08)60041-9
  20. Jackson, J. D., & Balota, D. A. (2013). Age-related changes in attentional selection: Quality of task set or degradation of task set across time? Psychology and Aging, 28(3), 744-753. https://doi.org/10.1037/a0033159
  21. Kim, D., Lowder, M. W., & Choi, W. (2021). Effects of print exposure on an online lexical decision task: A direct replication using a web-based experimental procedure. Frontiers in Psychology, 3448. https://doi.org/10.3389/fpsyg.2021.710663
  22. Kochari, A. R. (2019). Conducting web-based experiments for numerical cognition research. Journal of Cognition, 2(1). https://doi.org/10.5334/joc.85
  23. Langenecker, S. A., Nielson, K. A., & Rao, S. M. (2004). fMRI of healthy older adults during Stroop interference. Neuroimage, 21(1), 192-200. https://doi.org/10.1016/j.neuroimage.2003.08.027
  24. Li, P., Tsapanou, A., Qolamreza, R. R., & Gazes, Y. (2018). White matter integrity mediates decline in age-related inhibitory control. Behavioural Brain Research, 339, 249-254. https://doi.org/10.1016/j.bbr.2017.11.005
  25. Mackenzie, I. G., & Dudschig, C. (2021). DMCfun: An R package for fitting Diffusion Model of Conflict (DMC) to reaction time and error rate data. Methods in Psychology, 5, 100074. https://doi.org/10.1016/j.metip.2021.100074
  26. Mathis, A., Schunck, T., Erb, G., Namer, I. J., & Luthringer, R. (2009). The effect of aging on the inhibitory function in middle‐aged subjects: A functional MRI study coupled with a color‐matched Stroop task. International Journal of Geriatric Psychiatry: A journal of the psychiatry of late life and allied sciences, 24(10), 1062-1071.
  27. McKoon, G., & Ratcliff, R. (2013). Aging and predicting inferences: A diffusion model analysis. Journal of Memory and Language, 68(3), 240-254. https://doi.org/10.1016/j.jml.2012.11.002
  28. Mill, A., Allik, J., Realo, A., & Valk, R. (2009). Age-related differences in emotion recognition ability: A cross-sectional study. Emotion, 9(5), 619-630. https://doi.org/10.1037/a0016562
  29. Miyake, A., & Friedman, N. P. (2012). The nature and organization of individual differences in executive functions: Four general conclusions. Current directions in psychological science, 21(1), 8-14. https://doi.org/10.1177/0963721411429458
  30. Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., Howerter, A., & Wager, T. D. (2000). The unity and diversity of executive functions and their contributions to complex "frontal lobe" tasks: A latent variable analysis. Cognitive psychology, 41(1), 49-100. https://doi.org/10.1006/cogp.1999.0734
  31. Peirce, J., Gray, J. R., Simpson, S., MacAskill, M., Höchenberger, R., Sogo, H., ... & Lindeløv, J. K. (2019). PsychoPy2: Experiments in behavior made easy. Behavior research methods, 51, 195-203. https://doi.org/10.3758/s13428-018-01193-y
  32. Ratcliff, R. (1978). A theory of memory retrieval. Psychological Review, 85(2), 59-108. https://doi.org/10.1037/0033-295X.85.2.59
  33. Ratcliff, R., & McKoon, G. (2015). Aging effects in item and associative recognition memory for pictures and words. Psychology and Aging, 30(3), 669-674. https://doi.org/10.1037/pag0000030
  34. Ratcliff, R., Smith, P. L., Brown, S. D., & McKoon, G. (2016). Diffusion decision model: Current issues and history. Trends in cognitive sciences, 20(4), 260-281. https://doi.org/10.1016/j.tics.2016.01.007
  35. Ratcliff, R., Thapar, A., & McKoon, G. (2006a). Aging, practice, and perceptual tasks: A diffusion model analysis. Psychology and Aging, 21(2), 353-371. https://doi.org/10.1037/0882-7974.21.2.353
  36. Ratcliff, R., Thapar, A., & McKoon, G. (2006b). Aging and individual differences in rapid two-choice decisions. Psychonomic bulletin & review, 13(4), 626-635. https://doi.org/10.3758/BF03193973
  37. Ratcliff, R., Thapar, A., & McKoon, G. (2007). Application of the diffusion model to two-choice tasks for adults 75-90 years old. Psychology and Aging, 22(1), 56-66. https://doi.org/10.1037/0882-7974.22.1.56
  38. Rey-Mermet, A., & Gade, M. (2018). Inhibition in aging: What is preserved? What declines? A meta-analysis. Psychonomic bulletin & review, 25, 1695-1716. https://doi.org/10.3758/s13423-017-1384-7
  39. Rey-Mermet, A., & Gade, M. (2020). Age-related deficits in the congruency sequence effect are task-specific: An investigation of nine tasks. Psychology and Aging, 35(5), 744-764. https://doi.org/10.1037/pag0000414
  40. Rey-Mermet, A., Gade, M., & Oberauer, K. (2018). Should we stop thinking about inhibition? Searching for individual and age differences in inhibition ability. Journal of Experimental Psychology: Learning, Memory, and Cognition, 44(4), 501-526. https://doi.org/10.1037/xlm0000450
  41. Salthouse, T. A. (1996). The processing-speed theory of adult age differences in cognition. Psychological Review, 103(3), 403-428. https://doi.org/10.1037/0033-295X.103.3.403
  42. Schuch, S. (2016). Task inhibition and response inhibition in older vs. younger adults: A diffusion model analysis. Frontiers in psychology, 7, 1722.
  43. Semmelmann, K., & Weigelt, S. (2017). Online psychophysics: Reaction time effects in cognitive experiments. Behavior Research Methods, 49, 1241-1260. https://doi.org/10.3758/s13428-016-0783-4
  44. Statsenko, Y., Habuza, T., Charykova, I., Gorkom, K. N. V., Zaki, N., Almansoori, T. M., ... & Belghali, M. (2021). Predicting age from behavioral test performance for screening early onset of cognitive decline. Frontiers in Aging Neuroscience, 13, 661514. https://doi.org/10.3389/fnagi.2021.661514
  45. Ulrich, R., Schröter, H., Leuthold, H., & Birngruber, T. (2015). Automatic and controlled stimulus processing in conflict tasks: Superimposed diffusion processes and delta functions. Cognitive psychology, 78, 148-174. https://doi.org/10.1016/j.cogpsych.2015.02.005
  46. Venables, W. N., & Ripley, B. D. (2002). Modern applied statistics with S (4th ed.). New York, NY: Springer.
  47. Verhaeghen, P. (2011). Aging and executive control: Reports of a demise greatly exaggerated. Current Directions in Psychological Science, 20(3), 174-180. https://doi.org/10.1177/0963721411408772
  48. Verhaeghen, P. (2014). The elements of cognitive aging: Meta-analyses of age-related differences in processing speed and their consequences. Oxford, UK: Oxford University Press.
  49. Waszak, F., Li, S.-C., & Hommel, B. (2010). The development of attentional networks: Cross-sectional findings from a life span sample. Developmental Psychology, 46(2), 337-349. https://doi.org/10.1037/a0018541
  50. Wolf, D., Zschutschke, L., Scheurich, A., Schmitz, F., Lieb, K., Tüscher, O., & Fellgiebel, A. (2014). Age‐related increases in stroop interference: Delineation of general slowing based on behavioral and white matter analyses. Human brain mapping, 35(5), 2448-2458. https://doi.org/10.1002/hbm.22340