References
- M. A. Rosen and S. Koohi-Fayegh, Energy, Ecol. Environ., 1, 10 (2016).
- J. O. Abe, A. P. I. Popoola, E. Ajenifuja and O. M. Popoola, Int. J. Hydrogen Energy, 44, 15072 (2019). https://doi.org/10.1016/j.ijhydene.2019.04.068
- M. Yue, H. Lambert, E. Pahon, R. Roche, S. Jemei and D. Hissel, Renewable Sustainable Energy Rev., 146, 111180 (2021). https://doi.org/10.1016/j.rser.2021.111180
- S. P. Filippov and A. B. Yaroslavtsev, Russ. Chem. Rev., 90, 627 (2021). https://doi.org/10.1070/RCR5014
- S. Niaz, T. Manzoor and A. H. Pandith, Renewable Sustainable Energy Rev., 50, 457 (2015). https://doi.org/10.1016/j.rser.2015.05.011
- C. Tarhan and M. A. Çil, J. Energy Storage, 40, 102676 (2021). https://doi.org/10.1016/j.est.2021.102676
- M. R. Usman, Renewable Sustainable Energy Rev., 167, 112743 (2022). https://doi.org/10.1016/j.rser.2022.112743
- G. Valenti, Hydrogen liquefaction and liquid hydrogen storage, pp. 27-51, in Compendium of Hydrogen Energy (eds. R. B. Gupta, A. Basile, and T. N. Veziroğlu), Elsevier, Cambridge, United Kingdom (2016).
- A. T. Wijayanta, T. Oda, C. W. Purnomo, T. Kashiwagi and M. Aziz, Int. J. Hydrogen Energy, 44, 15026 (2019). https://doi.org/10.1016/j.ijhydene.2019.04.112
- A. Yamashita, M. Kondo, S. Goto and N. Ogami, Development of high-pressure hydrogen storage system for the Toyota "Mirai", SAE Technical Paper 2015-01-1169, SAE International, Warrendale, PA, United States (2015). https://doi.org/10.4271/2015-01-1169
- M. Zhang, H. Lv, H. Kang, W. Zhou and C. Zhang, Int. J. Hydrogen Energy, 44, 25777 (2019). https://doi.org/10.1016/j.ijhydene.2019.08.001
- C. Chilev and F. D. Lamari, Int. J. Hydrogen Energy, 41, 1744 (2016). https://doi.org/10.1016/j.ijhydene.2015.11.099
- J. Li, L. Zhang, R. Li, X. Yang and T. Zhang, Energy Storage Sci. Technol., 10, 1835 (2021).
- Y. Song, Phys. Chem. Chem. Phys., 15, 14524 (2013). https://doi.org/10.1039/c3cp52154k
- C. Zhou, Z. Li, Y. Zhao, Z. Hua, L. Zhang, M. Wen and P. Xu, Int. J. Hydrogen Energy, 39, 13634 (2014). https://doi.org/10.1016/j.ijhydene.2014.02.108
- C. San Marchi, B. P. Somerday and S. L. Robinson, Int. J. Hydrogen Energy, 32, 100 (2007). https://doi.org/10.1016/j.ijhydene.2006.05.008
- D. Mori and K. Hirose, Int. J. Hydrogen Energy, 34, 4569 (2009). https://doi.org/10.1016/j.ijhydene.2008.07.115
- M. Honselaar, G. Pasaoglu and A. Martens, Int. J. Hydrogen Energy, 43, 12278 (2018). https://doi.org/10.1016/j.ijhydene.2018.04.111
- S. K. Jeon, J. K. Jung, N. K. Chung, U. B. Baek and S. H. Nahm, Polymers, 14, 2233 (2022). https://doi.org/10.3390/polym14112233
- B.-L. Choi, M.-C. Choi, S. K. Jeon, U. B. Baek and B.-H. Choi, Polym. Test., 142, 108683 (2023). https://doi.org/10.1016/j.polymertesting.2024.108683
- J. K. Jung, K.-T. Kim and U. B. Baek, Curr. Appl. Phys., 37, 19 (2022). https://doi.org/10.1016/j.cap.2022.02.005
- C. H. Lee, J. K. Jung, K. S. Kim and C. J. Kim, Sci. Rep., 14, 5319 (2024). https://doi.org/10.1038/s41598-024-55101-w
- C. H. Lee, J.-K. Jung, S. K. Jeon, K. S. Ryu and U. B. Baek, J. Magn., 22, 478 (2017). https://doi.org/10.4283/JMAG.2017.22.3.478
- C. Zhou, Y. Huang, Y. Zheng and Z. Hua, Int. J. Hydrogen Energy, 59, 742 (2024). https://doi.org/10.1016/j.ijhydene.2024.02.042
- A. Koga, K. Uchida, J. Yamabe and S. Nishimura, Int. J. Automot. Eng., 2, 123 (2011). https://doi.org/10.20485/jsaeijae.2.4_123
- J. K. Jung, I. G. Kim, S. K. Jeon, K.-T. Kim, U. B. Baek and S. H. Nahm, Polym. Test., 99, 107147 (2021). https://doi.org/10.1016/j.polymertesting.2021.107147
- J. K. Jung, J. H. Lee, J. S. Jang, N. K. Chung, C. Y. Park, U. B. Baek and S. H. Nahm, Sci. Rep., 12, 3328 (2022). https://doi.org/10.1038/s41598-022-07321-1
- J. Yamabe and S. Nishimura, J. Appl. Polym. Sci., 122, 3172 (2011). https://doi.org/10.1002/app.34344
- J. Yamabe and S. Nishimura, Int. J. Hydrogen Energy, 34, 1977 (2009). https://doi.org/10.1016/j.ijhydene.2008.11.105
- J.-K. Jung, K.-T. Kim, N.-K. Chung, U.-B. Baek and S.-H. Nahm, Polymers, 14, 1468 (2022). https://doi.org/10.3390/polym14071468
- H. Fujiwara, H. Ono and S. Nishimura, Int. J. Hydrogen Energy, 47, 4725 (2022). https://doi.org/10.1016/j.ijhydene.2021.11.061
- J. K. Jung, J. H. Lee, J. Y. Park and S. K. Jeon, Polymers, 16, 2158 (2024). https://doi.org/10.3390/polym16152158
- J. K. Jung, J. H. Lee, S. K. Jeon, N. H. Tak, N. K. Chung, U. B. Baek, S. H. Lee, C. H. Lee, M. C. Choi, H. M. Kang, J. W. Bae and W. J. Moon, Int. J. Mol. Sci., 24, 2865 (2023). https://doi.org/10.3390/ijms24032865
- M. Kim and C. H. Lee, Polymers, 15, 2880 (2023). https://doi.org/10.3390/polym15132880
- W. Kuang, B. W. Arey, A. C. Dohnalkova, L. Kovarik, B. Mills, N. C. Menon, R. J. Seffens and K. L. Simmons, Int. J. Hydrogen Energy, 48, 8573 (2023). https://doi.org/10.1016/j.ijhydene.2022.12.004
- S. M. Lee, B.-L. Choi, U. B. Baek and B.-H. Choi, Mater. Des., 235, 112470 (2023). https://doi.org/10.1016/j.matdes.2023.112470
- J. K. Jung, I. G. Kim, K. S. Chung and U. B. Baek, Sci. Rep., 11, 4859 (2021). https://doi.org/10.1038/s41598-021-83692-1
- J. K. Jung, I. G. Kim, K. S. Chung, Y.-I. Kim and D. H. Kim, Sci. Rep., 11, 17092 (2021). https://doi.org/10.1038/s41598-021-96266-y
- J. K. Jung, I. G. Kim, S. K. Jeon and K. S. Chung, Rubber Chem. Technol., 94, 688 (2021). https://doi.org/10.5254/rct.21.79880
- J. Yamabe, S. Nishimura and A. Koga, SAE Int. J. Mater. Manuf., 2, 452 (2009). https://doi.org/10.4271/2009-01-0999
- J. K. Jung, I. G. Kim, K.-T. Kim, U. B. Baek and S. H. Nahm, Curr. Appl. Phys., 26, 9 (2021). https://doi.org/10.1016/j.cap.2021.03.005
- J. K. Jung, K.-T. Kim, J. H. Lee and U. B. Baek, Sens. Actuators B Chem., 393, 134258 (2023). https://doi.org/10.1016/j.snb.2023.134258
- H. Fujiwara, H. Ono, K. Ohyama, M. Kasai, F. Kaneko and S. Nishimura, Int. J. Hydrogen Energy, 46, 11832 (2021). https://doi.org/10.1016/j.ijhydene.2020.12.223
- H. Fujiwara, H. Ono, K. Onoue and S. Nishimura, Int. J. Hydrogen Energy, 45, 29082 (2020). https://doi.org/10.1016/j.ijhydene.2020.07.215
- J. K. Jung, I. G. Kim, K. T. Kim, K. S. Ryu and K. S. Chung, Polym. Test., 93, 107016 (2021). https://doi.org/10.1016/j.polymertesting.2020.107016
- J. K. Jung, K.-T. Kim and K. S. Chung, Mater. Chem. Phys., 276, 125364 (2022). https://doi.org/10.1016/j.matchemphys.2021.125364
- H. M. Kang, M. C. Choi, J. H. Lee, Y. M. Yun, J. S. Jang, N. K. Chung, S. K. Jeon, J. K. Jung, J. H. Lee, J. H. Lee, Y. W. Chang and J. W. Bae, Polymers, 14, 1151 (2022). https://doi.org/10.3390/polym14061151
- J. K. Jung, U. B. Baek, S. H. Lee, M. C. Choi and J. W. Bae, J. Polym. Sci., 61, 460 (2023). https://doi.org/10.1002/pol.20220494
- J. K. Jung, C. H. Lee, U. B. Baek, M. C. Choi and J. W. Bae, Polymers, 14, 592 (2022). https://doi.org/10.3390/polym14030592
- R. Karpeles and A. V. Grossi, EPDM Rubber Technology, p. 863, in Handbook of Elastomers (eds. A. K. Bhowmick and H. Stephens), CRC Press, Boca Raton, United States (2000).
- J. K. Jung, J. H. Lee, S. K. Jeon, U. B. Baek, S. H. Lee, C. H. Lee and W. J. Moon, Polymers, 15, 162 (2023). https://doi.org/10.3390/polym15010162
- H. Kang, J. Bae, J. Lee, Y. Yun, S. Jeon, N. Chung, J. Jung, U. Baek, J. Lee, Y. Kim and M. Choi, Polymers, 16, 1065 (2024). https://doi.org/10.3390/polym16081065
- B.-L. Choi, J. K. Jung, U. B. Baek and B.-H. Choi, Polymers, 14, 861 (2022). https://doi.org/10.3390/polym14050861
- S. K. Jeon, O. H. Kwon, N. H. Tak, N. K. Chung, U. B. Baek and S. H. Nahm, Mater. Today Commun., 30, 103038 (2022). https://doi.org/10.1016/j.mtcomm.2021.103038
- Y. Moon, H. Lee, J. Jung and H. Han, Sci. Rep., 13, 7846 (2023). https://doi.org/10.1038/s41598-023-34565-2
- J. K. Jung, C. H. Lee, M. S. Son, J. H. Lee, U. B. Baek, K. S. Chung, M. C. Choi and J. W. Bae, Polymers, 14, 700 (2022). https://doi.org/10.3390/polym14040700
- A. A. Basfar, Radiat. Phys. Chem., 50, 607 (1997). https://doi.org/10.1016/S0969-806X(97)00123-0
- J. Feng, Q. Zhang, Z. Tu, W. Tu, Z. Wan, M. Pan and H. Zhang, Polym. Degrad. Stab., 109, 122 (2014). https://doi.org/10.1016/j.polymdegradstab.2014.07.011
- G. Theiler, N. Cano Murillo and A. Hausberger, Lubricants, 12, 233 (2024). https://doi.org/10.3390/lubricants12070233
- ASTM D1434-23, Standard Test Method for Determining Gas Permeability Characteristics of Plastic Film and Sheeting, ASTM International, West Conshohocken, PA, United States (2023).
- ISO 15105-1, Plastics - Film and sheeting - Determination of gas-transmission rate - Part 1: Differential-pressure method, International Organization for Standardization, Geneva, Switzerland (2007).
- R. M. Barrer, Diffusion in and through Solids, Cambridge University Press, Cambridge, England (1941).
- D. W. Brubaker and K. Kammermeyer, Ind. Eng. Chem., 45, 1148 (1953). https://doi.org/10.1021/ie50521a069
- G. J. Van Amerongen, J. Appl. Phys., 17, 972 (1946). https://doi.org/10.1063/1.1707667
- J. G. Wijmans and R. W. Baker, J. Membr. Sci., 107, 1 (1995). https://doi.org/10.1016/0376-7388(95)00102-I
- J. K. Jung, Polymers, 16, 723 (2024). https://doi.org/10.3390/polym16050723
- J. K. Jung, U. B. Baek, S. H. Nahm and K. S. Chung, Mater. Chem. Phys., 279, 125745 (2022). https://doi.org/10.1016/j.matchemphys.2022.125745
- J. K. Jung, J. H. Lee, Y. W. Kim and N. K. Chung, Sens. Actuators B Chem., 418, 136240 (2024). https://doi.org/10.1016/j.snb.2024.136240
- J. K. Jung, K. T. Kim, U. B. Baek and S. H. Nahm, Polymers, 14, 756 (2022). https://doi.org/10.3390/polym14040756
- G. Firpo, E. Angeli, P. Guida, R. L. Savio, L. Repetto and U. Valbusa, Sci. Rep., 8, 6345 (2018). https://doi.org/10.1038/s41598-018-24551-4
- J. Humpenöder, Cryogenics, 38, 143 (1998). https://doi.org/10.1016/S0011-2275(97)00125-2
- M.-H. Klopffer, P. Berne and É. Espuche, Oil Gas Sci. Technol., 70, 305 (2015). https://doi.org/10.2516/ogst/2014008
- J. M. Lagaron, R. Catalá and R. Gavara, Mater. Sci. Technol., 20, 1 (2004). https://doi.org/10.1179/026708304225010442
- J. K. Jung, I. G. Kim and K. Kim, Curr. Appl. Phys., 21, 43 (2021). https://doi.org/10.1016/j.cap.2020.10.003
- J. Macher, A. Hausberger, A. E. Macher, M. Morak and B. Schrittesser, Int. J. Hydrogen Energy, 46, 22574 (2021). https://doi.org/10.1016/j.ijhydene.2021.04.095
- R. Scheichl, M.-H. Klopffer, Z. Benjelloun-Dabaghi and B. Flaconnèche, J. Membr. Sci., 254, 275 (2005). https://doi.org/10.1016/j.memsci.2005.01.019
- D. Paul and A. DiBenedetto, J. Polym. Sci. Part C: Polym. Symp., 10, 17 (1965).
- R. C. Ll. Jenkins, P. M. Nelson and L. Spirer, Trans. Faraday Soc., 66, 1391 (1970). https://doi.org/10.1039/tf9706601391
- J. Crank, The Mathematics of Diffusion, Clarendon Press, Oxford, UK (1979).
- S. A. Stern, S. M. Fang and R. M. Jobbins, J. Macromol. Sci. Part B Phys., 5, 41 (1971). https://doi.org/10.1080/00222347108212520
- Y. Naito, D. Bourbon, K. Terada and Y. Kamiya, J. Polym. Sci. Part B: Polym. Phys., 31, 693 (1993).
- G. Choudalakis and A. Gotsis, Curr. Opin. Colloid Interface Sci., 17, 132 (2012). https://doi.org/10.1016/j.cocis.2012.01.004
- J. S. Vrentas and J. L. Duda, J. Polym. Sci. Polym. Phys. Ed., 15, 403 (1977). https://doi.org/10.1002/pol.1977.180150302
- G.-H. Kim, Y.-I. Moon, J.-K. Jung, M.-C. Choi and J.-W. Bae, Polymers, 14, 155 (2022). https://doi.org/10.3390/polym14010155
- Y. I. Moon, J. K. Jung and K. S. Chung, Adv. Mater. Sci. Eng., 2020, 8406059 (2020). https://doi.org/10.1155/2020/8406059
- J. H. Lee, Y. W. Kim, N. K. Chung, H. M. Kang, W. J. Moon, M. C. Choi and J. K. Jung, Polymer, 311, 127552 (2024). https://doi.org/10.1016/j.polymer.2024.127552
- J. K. Jung, Y. I. Moon and K. S. Chung, J. Korean Phys. Soc., 76, 416 (2020). https://doi.org/10.3938/jkps.76.416
- Y. I. Moon, J. K. Jung, G. H. Kim and K. S. Chung, Phys. B Condens. Matter., 608, 412870 (2021). https://doi.org/10.1016/j.physb.2021.412870
- J. K. Jung, S. K. Jeon, K.-T. Kim, C. H. Lee, U. B. Baek and K. S. Chung, Sci. Rep., 9, 13035 (2019). https://doi.org/10.1038/s41598-019-49692-y
- J.-H. Lee, Y.-W. Kim and J.-K. Jung, Polymers, 15, 4019 (2023). https://doi.org/10.3390/polym15194019
- J. H. Lee, Y. W. Kim, D. J. Kim, N. K. Chung and J. K. Jung, Polymers, 16, 280 (2024). https://doi.org/10.3390/polym16020280
- M. L. Japas and J. M. H. Levelt Sengers, AIChE J, 35, 705 (1989). https://doi.org/10.1002/aic.690350502
- R. Sander, Atmos. Chem. Phys., 15, 4399 (2015). https://doi.org/10.5194/acp-15-4399-2015
- D. D. Do, H. D. Do and K. N. Tran, Langmuir, 19, 5656 (2003). https://doi.org/10.1021/la020191e
- Z. W. Zhu and Q. R. Zheng, Appl. Therm. Eng., 108, 605 (2016). https://doi.org/10.1016/j.applthermaleng.2016.07.146
- J. K. Jung, I. G. Kim, K. S. Chung and U. B. Baek, Mater. Chem. Phys., 267, 124653 (2021). https://doi.org/10.1016/j.matchemphys.2021.124653
- JCGM 100:2008, Evaluation of Measurement Data - Guide to the Expression of Uncertainty in Measurement (GUM 1995 with minor corrections), Joint Committee for Guides in Metrology (2008).
- J. K. Jung, K.-T. Kim, K. S. Ryu and K. S. Chung, J. Electr. Eng. Technol., 14, 371 (2019). https://doi.org/10.1007/s42835-018-00007-7
- J. K. Jung, A. Faisal, Y. S. Lee and K.-T. Kim, Meas. Sci. Technol., 26, 095004 (2015). https://doi.org/10.1088/0957-0233/26/9/095004
- J. K. Jung, A. Faisal, Y. S. Lee and K.-T. Kim, IEEE Trans. Instrum. Meas., 64, 1564 (2015). https://doi.org/10.1109/TIM.2015.2416457
- J. K. Jung, E. So, S. H. Lee and D. Bennett, IEEE Trans. Instrum. Meas., 60, 2634 (2011). https://doi.org/10.1109/TIM.2011.2126190