DOI QR코드

DOI QR Code

Development of In-situ Permeation Measuring System Based on Manometric Analysis Method for Evaluating High-Pressure Hydrogen Permeation Properties of Polymer Materials up to 100 MPa

최대 100 MPa 고분자 소재의 고압 수소 투과 특성 평가를 위한 압력 분석법 기반의 In-situ 투과 측정 시스템 개발

  • Ji Hun Lee (Department of Measurement Science, University of Science and Technology)
  • 이지훈 (과학기술연합대학원대학교 측정과학전공)
  • Received : 2025.03.24
  • Accepted : 2025.06.16
  • Published : 2025.07.27

Abstract

A high-pressure in-situ permeation measuring system was developed to evaluate the hydrogen permeation properties of polymer sealing materials in hydrogen environments up to 100 MPa. This system employs the manometric method, utilizing a compact and portable manometer to measure the permeated hydrogen over time, following high-pressure hydrogen injection. By utilizing a self-developed permeation-diffusion analysis program, this system enables precise evaluation of permeation properties, including permeability, diffusivity and solubility. To apply the developed system to high-pressure hydrogen permeation tests, the hydrogen permeation properties of ethylene propylene diene monomer (EPDM) materials containing silica fillers, specifically designed for gas seal in high-pressure hydrogen environments, were evaluated. The permeation measurements were conducted under pressure conditions ranging from 5 MPa to 90 MPa. The results showed that as pressure increased, hydrogen permeability and diffusivity decreased, while solubility remained constant regardless of pressure. Finally, the reliability of this system was confirmed through uncertainty analysis of the permeation measurements, with all results falling within an uncertainty of 11.2 %.

Keywords

References

  1. M. A. Rosen and S. Koohi-Fayegh, Energy, Ecol. Environ., 1, 10 (2016).
  2. J. O. Abe, A. P. I. Popoola, E. Ajenifuja and O. M. Popoola, Int. J. Hydrogen Energy, 44, 15072 (2019). https://doi.org/10.1016/j.ijhydene.2019.04.068
  3. M. Yue, H. Lambert, E. Pahon, R. Roche, S. Jemei and D. Hissel, Renewable Sustainable Energy Rev., 146, 111180 (2021). https://doi.org/10.1016/j.rser.2021.111180
  4. S. P. Filippov and A. B. Yaroslavtsev, Russ. Chem. Rev., 90, 627 (2021). https://doi.org/10.1070/RCR5014
  5. S. Niaz, T. Manzoor and A. H. Pandith, Renewable Sustainable Energy Rev., 50, 457 (2015). https://doi.org/10.1016/j.rser.2015.05.011
  6. C. Tarhan and M. A. Çil, J. Energy Storage, 40, 102676 (2021). https://doi.org/10.1016/j.est.2021.102676
  7. M. R. Usman, Renewable Sustainable Energy Rev., 167, 112743 (2022). https://doi.org/10.1016/j.rser.2022.112743
  8. G. Valenti, Hydrogen liquefaction and liquid hydrogen storage, pp. 27-51, in Compendium of Hydrogen Energy (eds. R. B. Gupta, A. Basile, and T. N. Veziroğlu), Elsevier, Cambridge, United Kingdom (2016).
  9. A. T. Wijayanta, T. Oda, C. W. Purnomo, T. Kashiwagi and M. Aziz, Int. J. Hydrogen Energy, 44, 15026 (2019). https://doi.org/10.1016/j.ijhydene.2019.04.112
  10. A. Yamashita, M. Kondo, S. Goto and N. Ogami, Development of high-pressure hydrogen storage system for the Toyota "Mirai", SAE Technical Paper 2015-01-1169, SAE International, Warrendale, PA, United States (2015). https://doi.org/10.4271/2015-01-1169
  11. M. Zhang, H. Lv, H. Kang, W. Zhou and C. Zhang, Int. J. Hydrogen Energy, 44, 25777 (2019). https://doi.org/10.1016/j.ijhydene.2019.08.001
  12. C. Chilev and F. D. Lamari, Int. J. Hydrogen Energy, 41, 1744 (2016). https://doi.org/10.1016/j.ijhydene.2015.11.099
  13. J. Li, L. Zhang, R. Li, X. Yang and T. Zhang, Energy Storage Sci. Technol., 10, 1835 (2021).
  14. Y. Song, Phys. Chem. Chem. Phys., 15, 14524 (2013). https://doi.org/10.1039/c3cp52154k
  15. C. Zhou, Z. Li, Y. Zhao, Z. Hua, L. Zhang, M. Wen and P. Xu, Int. J. Hydrogen Energy, 39, 13634 (2014). https://doi.org/10.1016/j.ijhydene.2014.02.108
  16. C. San Marchi, B. P. Somerday and S. L. Robinson, Int. J. Hydrogen Energy, 32, 100 (2007). https://doi.org/10.1016/j.ijhydene.2006.05.008
  17. D. Mori and K. Hirose, Int. J. Hydrogen Energy, 34, 4569 (2009). https://doi.org/10.1016/j.ijhydene.2008.07.115
  18. M. Honselaar, G. Pasaoglu and A. Martens, Int. J. Hydrogen Energy, 43, 12278 (2018). https://doi.org/10.1016/j.ijhydene.2018.04.111
  19. S. K. Jeon, J. K. Jung, N. K. Chung, U. B. Baek and S. H. Nahm, Polymers, 14, 2233 (2022). https://doi.org/10.3390/polym14112233
  20. B.-L. Choi, M.-C. Choi, S. K. Jeon, U. B. Baek and B.-H. Choi, Polym. Test., 142, 108683 (2023). https://doi.org/10.1016/j.polymertesting.2024.108683
  21. J. K. Jung, K.-T. Kim and U. B. Baek, Curr. Appl. Phys., 37, 19 (2022). https://doi.org/10.1016/j.cap.2022.02.005
  22. C. H. Lee, J. K. Jung, K. S. Kim and C. J. Kim, Sci. Rep., 14, 5319 (2024). https://doi.org/10.1038/s41598-024-55101-w
  23. C. H. Lee, J.-K. Jung, S. K. Jeon, K. S. Ryu and U. B. Baek, J. Magn., 22, 478 (2017). https://doi.org/10.4283/JMAG.2017.22.3.478
  24. C. Zhou, Y. Huang, Y. Zheng and Z. Hua, Int. J. Hydrogen Energy, 59, 742 (2024). https://doi.org/10.1016/j.ijhydene.2024.02.042
  25. A. Koga, K. Uchida, J. Yamabe and S. Nishimura, Int. J. Automot. Eng., 2, 123 (2011). https://doi.org/10.20485/jsaeijae.2.4_123
  26. J. K. Jung, I. G. Kim, S. K. Jeon, K.-T. Kim, U. B. Baek and S. H. Nahm, Polym. Test., 99, 107147 (2021). https://doi.org/10.1016/j.polymertesting.2021.107147
  27. J. K. Jung, J. H. Lee, J. S. Jang, N. K. Chung, C. Y. Park, U. B. Baek and S. H. Nahm, Sci. Rep., 12, 3328 (2022). https://doi.org/10.1038/s41598-022-07321-1
  28. J. Yamabe and S. Nishimura, J. Appl. Polym. Sci., 122, 3172 (2011). https://doi.org/10.1002/app.34344
  29. J. Yamabe and S. Nishimura, Int. J. Hydrogen Energy, 34, 1977 (2009). https://doi.org/10.1016/j.ijhydene.2008.11.105
  30. J.-K. Jung, K.-T. Kim, N.-K. Chung, U.-B. Baek and S.-H. Nahm, Polymers, 14, 1468 (2022). https://doi.org/10.3390/polym14071468
  31. H. Fujiwara, H. Ono and S. Nishimura, Int. J. Hydrogen Energy, 47, 4725 (2022). https://doi.org/10.1016/j.ijhydene.2021.11.061
  32. J. K. Jung, J. H. Lee, J. Y. Park and S. K. Jeon, Polymers, 16, 2158 (2024). https://doi.org/10.3390/polym16152158
  33. J. K. Jung, J. H. Lee, S. K. Jeon, N. H. Tak, N. K. Chung, U. B. Baek, S. H. Lee, C. H. Lee, M. C. Choi, H. M. Kang, J. W. Bae and W. J. Moon, Int. J. Mol. Sci., 24, 2865 (2023). https://doi.org/10.3390/ijms24032865
  34. M. Kim and C. H. Lee, Polymers, 15, 2880 (2023). https://doi.org/10.3390/polym15132880
  35. W. Kuang, B. W. Arey, A. C. Dohnalkova, L. Kovarik, B. Mills, N. C. Menon, R. J. Seffens and K. L. Simmons, Int. J. Hydrogen Energy, 48, 8573 (2023). https://doi.org/10.1016/j.ijhydene.2022.12.004
  36. S. M. Lee, B.-L. Choi, U. B. Baek and B.-H. Choi, Mater. Des., 235, 112470 (2023). https://doi.org/10.1016/j.matdes.2023.112470
  37. J. K. Jung, I. G. Kim, K. S. Chung and U. B. Baek, Sci. Rep., 11, 4859 (2021). https://doi.org/10.1038/s41598-021-83692-1
  38. J. K. Jung, I. G. Kim, K. S. Chung, Y.-I. Kim and D. H. Kim, Sci. Rep., 11, 17092 (2021). https://doi.org/10.1038/s41598-021-96266-y
  39. J. K. Jung, I. G. Kim, S. K. Jeon and K. S. Chung, Rubber Chem. Technol., 94, 688 (2021). https://doi.org/10.5254/rct.21.79880
  40. J. Yamabe, S. Nishimura and A. Koga, SAE Int. J. Mater. Manuf., 2, 452 (2009). https://doi.org/10.4271/2009-01-0999
  41. J. K. Jung, I. G. Kim, K.-T. Kim, U. B. Baek and S. H. Nahm, Curr. Appl. Phys., 26, 9 (2021). https://doi.org/10.1016/j.cap.2021.03.005
  42. J. K. Jung, K.-T. Kim, J. H. Lee and U. B. Baek, Sens. Actuators B Chem., 393, 134258 (2023). https://doi.org/10.1016/j.snb.2023.134258
  43. H. Fujiwara, H. Ono, K. Ohyama, M. Kasai, F. Kaneko and S. Nishimura, Int. J. Hydrogen Energy, 46, 11832 (2021). https://doi.org/10.1016/j.ijhydene.2020.12.223
  44. H. Fujiwara, H. Ono, K. Onoue and S. Nishimura, Int. J. Hydrogen Energy, 45, 29082 (2020). https://doi.org/10.1016/j.ijhydene.2020.07.215
  45. J. K. Jung, I. G. Kim, K. T. Kim, K. S. Ryu and K. S. Chung, Polym. Test., 93, 107016 (2021). https://doi.org/10.1016/j.polymertesting.2020.107016
  46. J. K. Jung, K.-T. Kim and K. S. Chung, Mater. Chem. Phys., 276, 125364 (2022). https://doi.org/10.1016/j.matchemphys.2021.125364
  47. H. M. Kang, M. C. Choi, J. H. Lee, Y. M. Yun, J. S. Jang, N. K. Chung, S. K. Jeon, J. K. Jung, J. H. Lee, J. H. Lee, Y. W. Chang and J. W. Bae, Polymers, 14, 1151 (2022). https://doi.org/10.3390/polym14061151
  48. J. K. Jung, U. B. Baek, S. H. Lee, M. C. Choi and J. W. Bae, J. Polym. Sci., 61, 460 (2023). https://doi.org/10.1002/pol.20220494
  49. J. K. Jung, C. H. Lee, U. B. Baek, M. C. Choi and J. W. Bae, Polymers, 14, 592 (2022). https://doi.org/10.3390/polym14030592
  50. R. Karpeles and A. V. Grossi, EPDM Rubber Technology, p. 863, in Handbook of Elastomers (eds. A. K. Bhowmick and H. Stephens), CRC Press, Boca Raton, United States (2000).
  51. J. K. Jung, J. H. Lee, S. K. Jeon, U. B. Baek, S. H. Lee, C. H. Lee and W. J. Moon, Polymers, 15, 162 (2023). https://doi.org/10.3390/polym15010162
  52. H. Kang, J. Bae, J. Lee, Y. Yun, S. Jeon, N. Chung, J. Jung, U. Baek, J. Lee, Y. Kim and M. Choi, Polymers, 16, 1065 (2024). https://doi.org/10.3390/polym16081065
  53. B.-L. Choi, J. K. Jung, U. B. Baek and B.-H. Choi, Polymers, 14, 861 (2022). https://doi.org/10.3390/polym14050861
  54. S. K. Jeon, O. H. Kwon, N. H. Tak, N. K. Chung, U. B. Baek and S. H. Nahm, Mater. Today Commun., 30, 103038 (2022). https://doi.org/10.1016/j.mtcomm.2021.103038
  55. Y. Moon, H. Lee, J. Jung and H. Han, Sci. Rep., 13, 7846 (2023). https://doi.org/10.1038/s41598-023-34565-2
  56. J. K. Jung, C. H. Lee, M. S. Son, J. H. Lee, U. B. Baek, K. S. Chung, M. C. Choi and J. W. Bae, Polymers, 14, 700 (2022). https://doi.org/10.3390/polym14040700
  57. A. A. Basfar, Radiat. Phys. Chem., 50, 607 (1997). https://doi.org/10.1016/S0969-806X(97)00123-0
  58. J. Feng, Q. Zhang, Z. Tu, W. Tu, Z. Wan, M. Pan and H. Zhang, Polym. Degrad. Stab., 109, 122 (2014). https://doi.org/10.1016/j.polymdegradstab.2014.07.011
  59. G. Theiler, N. Cano Murillo and A. Hausberger, Lubricants, 12, 233 (2024). https://doi.org/10.3390/lubricants12070233
  60. ASTM D1434-23, Standard Test Method for Determining Gas Permeability Characteristics of Plastic Film and Sheeting, ASTM International, West Conshohocken, PA, United States (2023).
  61. ISO 15105-1, Plastics - Film and sheeting - Determination of gas-transmission rate - Part 1: Differential-pressure method, International Organization for Standardization, Geneva, Switzerland (2007).
  62. R. M. Barrer, Diffusion in and through Solids, Cambridge University Press, Cambridge, England (1941).
  63. D. W. Brubaker and K. Kammermeyer, Ind. Eng. Chem., 45, 1148 (1953). https://doi.org/10.1021/ie50521a069
  64. G. J. Van Amerongen, J. Appl. Phys., 17, 972 (1946). https://doi.org/10.1063/1.1707667
  65. J. G. Wijmans and R. W. Baker, J. Membr. Sci., 107, 1 (1995). https://doi.org/10.1016/0376-7388(95)00102-I
  66. J. K. Jung, Polymers, 16, 723 (2024). https://doi.org/10.3390/polym16050723
  67. J. K. Jung, U. B. Baek, S. H. Nahm and K. S. Chung, Mater. Chem. Phys., 279, 125745 (2022). https://doi.org/10.1016/j.matchemphys.2022.125745
  68. J. K. Jung, J. H. Lee, Y. W. Kim and N. K. Chung, Sens. Actuators B Chem., 418, 136240 (2024). https://doi.org/10.1016/j.snb.2024.136240
  69. J. K. Jung, K. T. Kim, U. B. Baek and S. H. Nahm, Polymers, 14, 756 (2022). https://doi.org/10.3390/polym14040756
  70. G. Firpo, E. Angeli, P. Guida, R. L. Savio, L. Repetto and U. Valbusa, Sci. Rep., 8, 6345 (2018). https://doi.org/10.1038/s41598-018-24551-4
  71. J. Humpenöder, Cryogenics, 38, 143 (1998). https://doi.org/10.1016/S0011-2275(97)00125-2
  72. M.-H. Klopffer, P. Berne and É. Espuche, Oil Gas Sci. Technol., 70, 305 (2015). https://doi.org/10.2516/ogst/2014008
  73. J. M. Lagaron, R. Catalá and R. Gavara, Mater. Sci. Technol., 20, 1 (2004). https://doi.org/10.1179/026708304225010442
  74. J. K. Jung, I. G. Kim and K. Kim, Curr. Appl. Phys., 21, 43 (2021). https://doi.org/10.1016/j.cap.2020.10.003
  75. J. Macher, A. Hausberger, A. E. Macher, M. Morak and B. Schrittesser, Int. J. Hydrogen Energy, 46, 22574 (2021). https://doi.org/10.1016/j.ijhydene.2021.04.095
  76. R. Scheichl, M.-H. Klopffer, Z. Benjelloun-Dabaghi and B. Flaconnèche, J. Membr. Sci., 254, 275 (2005). https://doi.org/10.1016/j.memsci.2005.01.019
  77. D. Paul and A. DiBenedetto, J. Polym. Sci. Part C: Polym. Symp., 10, 17 (1965).
  78. R. C. Ll. Jenkins, P. M. Nelson and L. Spirer, Trans. Faraday Soc., 66, 1391 (1970). https://doi.org/10.1039/tf9706601391
  79. J. Crank, The Mathematics of Diffusion, Clarendon Press, Oxford, UK (1979).
  80. S. A. Stern, S. M. Fang and R. M. Jobbins, J. Macromol. Sci. Part B Phys., 5, 41 (1971). https://doi.org/10.1080/00222347108212520
  81. Y. Naito, D. Bourbon, K. Terada and Y. Kamiya, J. Polym. Sci. Part B: Polym. Phys., 31, 693 (1993).
  82. G. Choudalakis and A. Gotsis, Curr. Opin. Colloid Interface Sci., 17, 132 (2012). https://doi.org/10.1016/j.cocis.2012.01.004
  83. J. S. Vrentas and J. L. Duda, J. Polym. Sci. Polym. Phys. Ed., 15, 403 (1977). https://doi.org/10.1002/pol.1977.180150302
  84. G.-H. Kim, Y.-I. Moon, J.-K. Jung, M.-C. Choi and J.-W. Bae, Polymers, 14, 155 (2022). https://doi.org/10.3390/polym14010155
  85. Y. I. Moon, J. K. Jung and K. S. Chung, Adv. Mater. Sci. Eng., 2020, 8406059 (2020). https://doi.org/10.1155/2020/8406059
  86. J. H. Lee, Y. W. Kim, N. K. Chung, H. M. Kang, W. J. Moon, M. C. Choi and J. K. Jung, Polymer, 311, 127552 (2024). https://doi.org/10.1016/j.polymer.2024.127552
  87. J. K. Jung, Y. I. Moon and K. S. Chung, J. Korean Phys. Soc., 76, 416 (2020). https://doi.org/10.3938/jkps.76.416
  88. Y. I. Moon, J. K. Jung, G. H. Kim and K. S. Chung, Phys. B Condens. Matter., 608, 412870 (2021). https://doi.org/10.1016/j.physb.2021.412870
  89. J. K. Jung, S. K. Jeon, K.-T. Kim, C. H. Lee, U. B. Baek and K. S. Chung, Sci. Rep., 9, 13035 (2019). https://doi.org/10.1038/s41598-019-49692-y
  90. J.-H. Lee, Y.-W. Kim and J.-K. Jung, Polymers, 15, 4019 (2023). https://doi.org/10.3390/polym15194019
  91. J. H. Lee, Y. W. Kim, D. J. Kim, N. K. Chung and J. K. Jung, Polymers, 16, 280 (2024). https://doi.org/10.3390/polym16020280
  92. M. L. Japas and J. M. H. Levelt Sengers, AIChE J, 35, 705 (1989). https://doi.org/10.1002/aic.690350502
  93. R. Sander, Atmos. Chem. Phys., 15, 4399 (2015). https://doi.org/10.5194/acp-15-4399-2015
  94. D. D. Do, H. D. Do and K. N. Tran, Langmuir, 19, 5656 (2003). https://doi.org/10.1021/la020191e
  95. Z. W. Zhu and Q. R. Zheng, Appl. Therm. Eng., 108, 605 (2016). https://doi.org/10.1016/j.applthermaleng.2016.07.146
  96. J. K. Jung, I. G. Kim, K. S. Chung and U. B. Baek, Mater. Chem. Phys., 267, 124653 (2021). https://doi.org/10.1016/j.matchemphys.2021.124653
  97. JCGM 100:2008, Evaluation of Measurement Data - Guide to the Expression of Uncertainty in Measurement (GUM 1995 with minor corrections), Joint Committee for Guides in Metrology (2008).
  98. J. K. Jung, K.-T. Kim, K. S. Ryu and K. S. Chung, J. Electr. Eng. Technol., 14, 371 (2019). https://doi.org/10.1007/s42835-018-00007-7
  99. J. K. Jung, A. Faisal, Y. S. Lee and K.-T. Kim, Meas. Sci. Technol., 26, 095004 (2015). https://doi.org/10.1088/0957-0233/26/9/095004
  100. J. K. Jung, A. Faisal, Y. S. Lee and K.-T. Kim, IEEE Trans. Instrum. Meas., 64, 1564 (2015). https://doi.org/10.1109/TIM.2015.2416457
  101. J. K. Jung, E. So, S. H. Lee and D. Bennett, IEEE Trans. Instrum. Meas., 60, 2634 (2011). https://doi.org/10.1109/TIM.2011.2126190