• Title/Summary/Keyword: 3D finite element analysis

Search Result 1,955, Processing Time 0.032 seconds

Analysis of PSC Box Girder Anchorage Zone using FEM and 2D SUB-3D STM Approach (유한요소법 및 유사 3 차원 스트릿-타이 모델 방법을 이용한 PSC 박스거더 정착부의 해석)

  • Yun, Young-Mook;Kim, Seung-Eock;Oh, Jin-Woo;Park, Jung-Woong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.4 no.2
    • /
    • pp.113-129
    • /
    • 2000
  • This study evaluates the behavior and strength of an anchorage zone of the prestressed concrete box girder bridge on the Kyungboo highway railroad using the 2D SUB-3D STM approach and a linear elastic finite element analysis. The 2D SUB-3D STM approach utilizes several two-dimensional sub strut-tie models that represent the compressive and tensile stress flows of each projected plane of the three-dimensional structural concrete in the selection of a three dimensional strut-tie model, evaluation of the effective strengths of the concrete struts, and verification of the geometric compatibility condition and bearing capacity of the critical nodal zones in the selected three-dimensional strut-tie model. The finite element analysis uses an 8-node brick element and the longitudinal prestressing force is considered as the equivalent nodal force. Analysis results show that the 2D SUB-3D STM approach and linear elastic finite element method can be effectively applied to the analysis and design of three-dimensional structural concrete including a prestressed concrete box girder anchorage zone.

  • PDF

Finite Element Analysis and Experiment Study of Motorcycle Helmet (모터 싸이클 헬멧의 유한 요소 해석 및 실험 연구)

  • Thai, Huu-Tai;Kim, Seung-Eock
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.451-456
    • /
    • 2007
  • A finite element analysis and experiment study of a motorcycle helmet are presented in this paper. The finite element LS-DYNA3D code is used to analyze the helmet. The test specimen, instruments, and setup procedures are described. Since the displacements and Von-Mises stresses obtained by numerical analysis and experiment agree well, the numerical simulation is proved to be valid.

  • PDF

Comparison of Hybrid Hemming and Roller Hemming Using Finite Element Analysis (유한요소해석을 이용한 하이브리드 헤밍과 롤러 헤밍의 비교)

  • Jo, D.S.;Oh, M.H.;Kim, R.H.;Kim, J.H.
    • Transactions of Materials Processing
    • /
    • v.30 no.3
    • /
    • pp.119-124
    • /
    • 2021
  • In this study, the hybrid and roller hemming processes of aluminum alloy sheets were compared using the finite element analysis. The aluminum alloy 6014-T4 sheet with a thickness of 1 mm was used for the hemming process. The mechanical properties of the aluminum sheet obtained through a uniaxial tensile test were used for the simulation. The finite element analysis of hybrid and roller hemming was performed using a commercial software (ABAQUS) by the use of the mechanical properties. The finite element simulation results showed that the hybrid hemming holds an advantage over the roller hemming in terms of the dimensional accuracy

3D Shape Optimization of Electromagnetic Device Using Design Sensitivity Analysis and Mesh Relocation Method (설계민감도해석과 요소망 변형법을 이용한 전자소자의 3차원 형상최적화)

  • ;Yao Yingying
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.7
    • /
    • pp.307-314
    • /
    • 2003
  • This paper presents a 3D shape optimization algorithm for electromagnetic devices using the design sensitivity analysis with finite element method. The structural deformation analysis based on the deformation theory of the elastic body under stress is used for mesh renewing. The design sensitivity and adjoint variable formulae are derived for the 3D finite element method with edge element. The results of sensitivity analysis are used as the input data of the structural analysis to calculate the relocation of the nodal points. This method makes it possible that the new mesh of analysis region can be obtained from the initial mesh without regeneration. The proposed algorithm is applied to the shape optimization of 3D electromagnet pole to net a uniform flux density at the target region.

A Study on Vibration Analysis Method Using the Global Structural Analysis Model (전선 구조해석 모델을 이용한 진동해석 방법에 관한 연구)

  • Park, Hyung-Sik;Choi, Su-Hyun;Lee, Yong-Sub
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.3 s.153
    • /
    • pp.314-322
    • /
    • 2007
  • In general, the vibration and structural analyses have been carried out by using each finite element model separately because of different size of finite element mesh and different focusing area of each analysis. In some cases, however, it is required to perform both global vibration and structural analyses at the same time using a finite element model for global structural analysis, which asks for a special treatment for a vibration analysis. In this study, a technique to perform a global vibration analysis using a finite element model for a global structural analysis has been developed and its effectiveness has been verified by its application to a whole ship.

Finite Element Analysis for Lower End Fitting using 3-D Solid Modeler (3-D 솔리드모델러를 이용한 원자료 핵연료 하단고정체의 유한요소 해석)

  • 이상순;홍현기;문연철;전경락
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.04a
    • /
    • pp.3-9
    • /
    • 2001
  • In this study, the geometric modeling has been conducted for the current lower end fitting and 2 candidates using three-dimensional solid modeler, Solidworks. Then, the three-dimensional stress analysis using the finite element method has been performed. The evaluation for the mechanical integrity of 2 candidates has been performed based on the stress distribution obtained from the finite element analysis.

  • PDF

A Study on the T-branch Forming with 3-D Finite Element Method (3차원 유한요소법을 이용한 T형 가지관의 용접자리 성형 방법에 관한 연구)

  • 홍대훈;황두순;신동필;홍성인
    • Transactions of Materials Processing
    • /
    • v.10 no.1
    • /
    • pp.23-29
    • /
    • 2001
  • In this study, the optimized initial hole shape for T-branch forming was proposed to obtain effective welding region. Design variables were determined by approximation analysis using volume constant condition. We performed 3D elastic-plastic FEM(Finite Element Method) analysis to simulate T-branch forming process. The variation of height and thickness of T-branch with various hole shapes was investigated. The optimized initial hole shape equation was obtained by using results for the numerical analysis.

  • PDF

Impact Analysis of Motorcycle Helmet (모터싸이클 헬멧의 충격 해석)

  • Thai, Huu-Tai;Kim, Seung-Eock
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.573-578
    • /
    • 2008
  • Finite element analysis of impact response of a motorcycle helmet is presented in this paper. The finite element LS-DYNA3D code is used to simulate the impact response of the helmet including of plastic shell, foam liner, and magnesium headform. Since the maximum accelerations at center of gravity of the headform obtained by numerical analysis and experiment agree well, the numerical simulation is proved to be valid.

  • PDF

Formulation Method of a Solid-To-Beam Transitional Finite Element (연속체-보 천이 유한요소의 구성)

  • Park, Woo-Jin;Lim, Jang-Keun
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.351-356
    • /
    • 2000
  • Various transition elements are generally used for the effective analysis of a complicated mechanical structure. In this paper, a solid-to-beam transition finite element which connects a continuum element and a $c^1-continuity$ beam element each other is proposed. The shape functions of the transition finite elements, which a 8-noded hexahedral solid element fur 3D analysis and a 4-noded quadrilateral plane element fur 2D analysis are connected to a Euler's beam element, are explicitely formulated. In order to show the effectiveness and convergence characteristics of the proposed transition elements. numerical tests are performed for various examples and their results are compared with those obtained by other methods. As the result of this study. following conclusions are obtained: (1)The proposed transition finite elements show the monotonic convergence characteristics because of having used the compatible displacement folds. (2)As being used the transition element in the finite element analysis, the finite element modelings are more convenient and the analysis results are more accurate because of the formulation characteristies of the Euler's beam element.

  • PDF

Direct Finite Element Model Generation using 3 Dimensional Scan Data (3D SCAN DATA 를 이용한 직접유한요소모델 생성)

  • Lee Su-Young;Kim Sung-Jin;Jeong Jae-Young;Park Jong-Sik;Lee Seong-Beom
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.5 s.182
    • /
    • pp.143-148
    • /
    • 2006
  • It is still very difficult to generate a geometry model and finite element model, which has complex and many free surface, even though 3D CAD solutions are applied. Furthermore, in the medical field, which is a big growth area of recent years, there is no drawing. For these reasons, making a geometry model, which is used in finite element analysis, is very difficult. To resolve these problems and satisfy the requests of the need to create a 3D digital file for an object where none had existed before, new technologies are appeared recently. Among the recent technologies, there is a growing interest in the availability of fast, affordable optical range laser scanning. The development of 3D laser scan technology to obtain 3D point cloud data, made it possible to generate 3D model of complex object. To generate CAD and finite element model using point cloud data from 3D scanning, surface reconstruction applications have widely used. In the early stage, these applications have many difficulties, such as data handling, model creation time and so on. Recently developed point-based surface generation applications partly resolve these difficulties. However there are still many problems. In case of large and complex object scanning, generation of CAD and finite element model has a significant amount of working time and effort. Hence, we concerned developing a good direct finite element model generation method using point cloud's location coordinate value to save working time and obtain accurate finite element model.