• Title/Summary/Keyword: 8-phenyltheophylline

Search Result 6, Processing Time 0.025 seconds

Pharmacological Action of Adenosine on the Cardiovascular System (Adenosine의 심장 및 혈관에 대한 약리작용)

  • Ann, Hyung-Soo;Lee, Young-Me
    • Korean Journal of Clinical Pharmacy
    • /
    • v.21 no.1
    • /
    • pp.6-13
    • /
    • 2011
  • Bolus intravenous injection of adenosine resulted the temporal decrease of systemic blood pressure and heart rate in the anesthetized rats. Adenosine also resulted the persistent decrease of contractility and heart rate in the isolated spontaneously beating rat right atria. Both of the above inhibition effets of adenosine were increased by the pretreatment of NBI (nitrobenzylthioinosine), whitch is an adenosine transport inhibitor, but decreased by the pretreatment of 8- phenyltheophy1line, which is an adenosine antagonist. In isolated thoracic aorta ring segment of normotensive rats, intact rings were relaxed by adenosine ($42.3{\pm}8.7%$) and ATP ($85.9{\pm}15.8%$) in the concentration of $10^{-4}M$, but rubbed rings were relaxed by adenosine ($35.2{\pm}1.9%$) and ATP ($11.3{\pm}9.0%$) in $10^{-4}M$. After pretreatment of L-NAME (N-Nitro-Larginine methyl ester), which is an NO inhibitor, adenosine-induced relaxation was not affected, but ATP-induced relax ation was significantly inhibited (P<0.01). Meanwhile, adenosine resulted almost same as vasorelaxation in isolated thoracic aorta of SHR comparing to those of normotensive rats. But, vasodilation responses of ATP in intact rings of SHR are significantly inhibited comparing to those of normotensive rats. Adenosine-induced relaxation is attenuated after 8-phenyltheophylline pretreatment, but increased after NBI pretreatment. However, ATP-induced relaxations are not affected by 8-phenyltheophylline or NBI pretreatment. These results suggested that the hypotensive effects of adenosine was due to the decrease of contractile force and heart rate through the A1 receptor and vasodilation are mediated by A2 receptor of the vascular smooth muscle. And, the heart protective and vasodilation effects of adenosine might suggest that it would be useful in the acute treatment of coronary artery disease.

Effect of Adenosine Receptor Antagonists on the Renal Function and Renin Release in Rabbits (가토의 신장기능과 Renin 분비에 미치는 Adenosine수용체 차단제의 영향)

  • Rhee, Keon-Su;Kim, Young-Jin;Kim, Suhn-Hee;Cho, Kyung-Woo
    • The Korean Journal of Physiology
    • /
    • v.23 no.2
    • /
    • pp.377-391
    • /
    • 1989
  • Recently it was suggested that the endogenous adenosine might be the mediator for the intercellular communication in the regulation of tubuloglomerular feedback control and renin release. Even though the previous data showed more important regulatory roles in the renal hemodynamics and renin release for the A1 adenosine receptor, it has not yet been settled down about the functional subclassification of renal adenosine receptors. The purpose of the present experiment was to clarify the importance of the renal adenosine receptors for the regulations of the hemodynamic, excretory and secretory functions. Experiments have been done in unanesthetized rabbits. Intrarenal arterial infusion of A1 adenosine antagonist, 8-phenyltheophylline, $3{\sim}30\;nmole/min$, increased urine flow, renal hemodynamics and urinary excretion of sodium. Intrarenal arterial infusion of Al antagonist, 1-3-diethyl-8-phenylxanthine (DPX), $10{\sim}100\;nmole/min$, increased renal hemodynamics and excretory functions. Non-specific adenosine antagonist, theophylline, $30{\sim}300\;nmole/min$, resulted in dose dependent increases in renal hemodynamics and excretory function. All of the three adenosine antagonists for the increases in renal hemodynamics, excretory and secretory functions was 8-phenyltheophylline > DPX > theophylline. These results suggest that the endogenous adenosine is important for the intrinsic regulatory roles for the renal functions through the adenosine receptors, and that the A1 adenosine receptor is more important than the A2 receptor in the regulation of renal hemodynamics, excretory and renin secretory functions.

  • PDF

Relaxation of P2-purinoceptor on isolated renal artery of rabbit (토끼 적출 신동맥에 있어서 P2-purinoceptor의 이완작용)

  • Kim, Joo-heon;Kim, Yong-keun
    • Korean Journal of Veterinary Research
    • /
    • v.32 no.1
    • /
    • pp.7-13
    • /
    • 1992
  • To elucidate the action of $P_2$-purinoceptor, effects of adenosine triphosphate(ATP) and perivascular nerve stimulation were investigated from polygraph in the isolated renal artery of rabbit 1. ATP caused the relaxation on the precontraction with noradrenaline$(10{\mu}M)$ on the presene and absence of endothelium in the isolated renal artery of rabbit, the relaxative response was increased between 0.1 and $30{\mu}M$ on dose-dependent manner. 2. The relaxative response induced by ATP$(10{\mu}M)$ on precontraction with noradrenaline$(10{\mu}M)$ was blocked by the pretreatment with reactive blue 2$(10{\mu}M)$. 3. ATP inhibited the contractile response by perivascular nerve stimulation(0.3ms, 80V, 50Hz, 1 sec), the inhibitory action was blocked by the pretreatment with 8-phenyltheophylline$(10{\mu}M)$.

  • PDF

Receptor Specificity of Adenosine Analogs in Terms of Renal Function and Renin Release (Adenosine 유사체의 신장효과에 미치는 Adenosine 차단제의 영향)

  • Yun, Young-Yi;Koh, Gou-Young;Kim, Suhn-Hee;Cho, Kyung-Woo
    • The Korean Journal of Physiology
    • /
    • v.24 no.2
    • /
    • pp.269-280
    • /
    • 1990
  • The purpose of the present experiment was to determine the functional subclassification of renal adenosine receptor fer the hemdynamic, excretory and secretory functions in unanesthetized rabbits. Adenosine antagonist, 8-phenyltheophylline (8-PT) or theophylline, was infused into the left renal artery followed by an infusion of adenosine agonist, cyclohexyladenosine (CHA) or 5'-N-ethylcarboxamidoadenosine (NECA). Intrarenal arterial infusion of CHA or NECA caused decreases in urine volume, glomerular filtration rate, renal plasma flow and excreted amount of electrolytes and renin release in a dose-dependent manner. Dose-response curves in renal function by CHA or NECA was similar and shifted to the right with pretreatment of 8-PT or theophylline. No significant differences in renal response to CHA and NECA in antagonist-treated rabbits were observed. However, the decrease in renin secretion rate was not affected by the adminstration of adenosine antagonists. These results suggest that the renal effect of adenosine receptor agonists appears by way of specific adenosine receptor, but which is not functionally subclassified in the rabbit.

  • PDF

Differential Modulation of Exogenous and Endogenous Adenosine-induced Coronary Vasodilation by Dipyridamole

  • Kim, Young-Hoon;Kim, Chan-Hyung;Kim, Myung-Suk
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.5 no.5
    • /
    • pp.423-431
    • /
    • 2001
  • Some recent investigations revealed that vasodilatory action of adenosine is mainly not mediated by surface A2 receptor and suggested the existence of an intracellular action site. In the present study, we tried to differentiate intracellular from extracellular site of adenosine action in the regulation of coronary flow. In perfused rabbit hearts, concentration-response curve of coronary flow to exogenous adenosine was constructed in the presence or absence of dipyridamole, an inhibitor of transmembrane purine transport. Inhibition of cellular adenosine uptake by dipyridamole suppressed the increase of flow rate while enhancing the decrease in heart rate induced by exogenous adenosine. In another series of experiments, perfused rabbit hearts were subjected to energy deprivation in order to increase the production of endogenous adenosine. Energy deprivation along with dipyridamole administration resulted in higher coronary flow rate. Lower perfusate adenosine concentration was observed along with higher tissue adenosine content in this group. These results implied that coronary flow rate is determined not by interstitial adenosine concentration but by intracellular activity of adenosine. To confirm the effects of dypiridamole in vivo, direct measurement of interstitial adenosine concentration by mycrodialysis along with the assay of intracellular adenosine content was performed after intranenous dipyridamole administration. After dipyridamole infusion, intracellular adenosine content was markedly increased while interstitial adenosine concentration was not altered. In another series of experiments, the right shift of concentration-response curve of adenosine-induced vasodilation by 8-phenyltheophilline, a representative adenosine receptor antagonist, was mostly abolished by prior administration of prazosin, indicating that the influence of 8-PT on the adenosine action is not attributed to the inhibition of A2 receptor but related to the suppression of ${\alpha}-adrenoceptor$ activation. From these results, we concluded that adenosine acts intracellularly to regulate the coronary blood flow.

  • PDF

Effect of Unilateral Renal Arterial Infusion of Angiotensin II on Renal Function and Renin Secretion in Unanesthetized Rabbit (신동맥내 투여한 Angiotensin II가 신장기능 및 Renin 분비에 미치는 영향)

  • Kim, Jong-Hun;Kang, Nam-Poo;Kim, Young-Jin;Kim, Suhn-Hee;Cho, Kyung-Woo
    • The Korean Journal of Physiology
    • /
    • v.23 no.2
    • /
    • pp.363-375
    • /
    • 1989
  • It has been well known that peripheral infusion of angiotensin II results in an increase of blood pressure, and an elevation of aldosterone secretion, and an inhibition of renin relase. However, the direct effect of angiotensin II on renal function has not been clearly established. In the present study, to investigate the effect of angiotensin II on renal function and renin release, angiotensin II (0.3, 3 and 10 ng/kg/min) was infused into a unilateral renal artery of the unanesthetized rabbit and changes in renal function and active and inactive renin secretion rate (ARSR, IRSR) were measured. In addition, to determine the relationship between the renal effect of angiotensin II and adenosine, the angiotensin II effect was evaluated in the presence of simultaneously infused 8-phenyltheophylline (8-PT, 30 nmole/min), adenosine A 1 receptor antagonist. Angiotensin II infusion at dose less than 10 ng/kg/min decreased urine flow, clearances of para-amino-hippuric acid and creatinine, and urinary excretion of electrolytes in dose-dependent manner. The changes in urine flow and sodium excretion were significantly correlated with the change in renal hemodynamics. Infusion of angiotensin II at 10 ng/kg/min also decreased ARSR, but it has no significant effect on IRSR. The change in ARSR was inversely correlated with the change in IRSR. The plasma concentration of catecholamine was not altered by an intarenal infusion of angiotensin II. In the presence of 8-PT in the infusate, the effect of angiotensin II on renal function was significantly attenuated, but that on renin secretion was not modified. These results suggest that the reduction in urine flow and Na excretion during intrarenal infusion of angiotensin II was not due to direct inhibitions of renal tubular transport systems, but to alterations of renal hemodynamics which may partly be mediated by the adenosine receptor.

  • PDF