• Title/Summary/Keyword: A549 cell

Search Result 881, Processing Time 0.035 seconds

Effects of Andrographitis Herba in A549 Lung Cancer Cells (천심련(穿心蓮)이 A549 폐암세포에 미치는 영향)

  • Bum, Hee-Byun;Han, Hyo-Sang;Lee, Young-Jong
    • The Korea Journal of Herbology
    • /
    • v.25 no.2
    • /
    • pp.107-116
    • /
    • 2010
  • Objectives : This study purposed to research the anti-cancer effects of Andrographitis Herba. Methods : By measuring the cell proliferation, apoptosis, morphology and cytokine level from the extracts, the influence on a A549 cell was compared. Results : The Andrographitis Herba decoction extract according to the concentration inhibited the proliferation and increased the apoptosis of the A549 cell. Among the various fraction extracts of the Andrographitis Herba decoction, EtOEt showed the greatest increase of the apoptosis of the A549 cell. The Andrographitis Herba decoction extract according to the concentration decreased the secretion of the TGF-$\beta$ in the A549 cell, and increased the secretion of the TNF-$\alpha$ and the IFN-$\gamma$ presenting cell population. Conclusion : It is considered that the total extract and various fraction extracts of Andrographitis Herba decoction inhibit the proliferation of A549 cells.

Snake Venom-enhanced Cytotoxic Effect of Natural Killer Cells on A549 Human Lung Cancer Cell Growth (사독의 인체 폐암세포(A549)에 대한 Natural Killer 세포 세포독성 촉진 효과)

  • Lee, Ji In;Song, Ho Sueb
    • Journal of Acupuncture Research
    • /
    • v.32 no.1
    • /
    • pp.79-88
    • /
    • 2015
  • Objectives : The purpose of this research was to investigate the cytotoxic effect of Natural Killer(NK)-92 cell and Snake Venom, and to elucidate its mechanism on human lung carcinoma cell A549. Methods : In order to figure out whether Snake Venom enhances the cytotoxic effect of NK-92 cell in A549 cell, Cell Viability Assay was conducted. Also, in order to observe the changes of Caspase-3 and Caspase-8, both of which are proteinases that advance apoptosis, and the changes of TNRF and DR3, which are Death Receptors of the extrinsic pathway of apoptosis, Western Blot Analysis was conducted. By conducting RT-PCR analysis, we have tried to confirm Perforin, Granzyme B, and GADPH, all of which are cytotoxic-related proteins. Lastly, in order to observe the effect of Snake Venom on NO formation within human lung carcinoma cells, NO determination was conducted. Results : 1. After conducting Cell Viability Assay, Snake Venom enhanced the cytotoxic effect of NK-92 cell and inhibited the growth of A549. 2. Western Blot Analysis caused proteinases Caspase-3 and Caspase-8, which advance apoptosis, to increase in the combined treatment group, but not in treatment groups that focused only on either Snake Venom or NK-92 cell in A549 lung carcinoma cells. 3. Western Blot Analysis caused an expression of TNFR2 and DR3, both of which are Death Receptors of the apoptosis extrinsic pathway, in the combined treatment group, but not intreatment groups that focused only on either Snake Venom or NK-92 cell in A549 human lung carcinoma cells. 4. After conducting NO determination, NO formation within A549 cell showed no significant changes in both treatment groups that focused NK-92 cell and combined treatment group. 5. After conducting RT-PCR, the expression of Granzyme B and Perforin, which are cytotoxic-related proteins within A549 human lung carcinoma cells, showed growth in the combined treatment group, but not the treatment group that focused only on NK-92 cell. Conclusion : It has been indicated that, when it comes to the A549 cell, Snake Venom enhances the increase of Death Receptor expression and continuous apoptosis reaction, leading to the enhancement of the cancer cell cytotoxic effect of the NK-92 cell. It is expected that Snake Venom can be used with the NK-92 cell for further lung cancer treatment.

Induction of Apoptosis by Samgibopae-tang in Human Non-small-cell Lung Cancer Cells (인체폐암세포 NCI-H460 및 A549의 apoptosis 유발에 미치는 삼기보배탕의 영향)

  • Heo, Man-Kyu;Heo, Tae-Yool;Kim, Ki-Tak;Byun, Mi-Kwon;Kim, Jin-Young;Sim, Sung-Heum;Kim, Koang-Lock;Kam, Cheol-Woo;Park, Dong-Il
    • The Journal of Internal Korean Medicine
    • /
    • v.28 no.3
    • /
    • pp.473-491
    • /
    • 2007
  • Objectives : This study was designed to investigate the antiproliferative activity of the water extract of Samgibopae-tang (SGBPT) in NCI-H460 and A549 non-small-cell lung cancer cell lines Methods : In this study, we measured the subsistence, form of NCI-H460 and A549 non-small-cell lung cancer cell by hemocytometer and DAPI staining. In each cell, we analyzed DNA fragmentation. reverse transcription-polymerase chain reaction and measured activity of caspase-3, caspase-8 and caspase-9. Results and Conclusions : We found that exposure of A549 cells to SGBPT resulted in growth inhibition in a dose-dependent manner. butSGBPT did not affect the growth of NCI-H460 cells. The antiproliferative effect by SGBPT treatment in A549 cells was associated with morphological changes. SGBPT treatment partially induced the expression of DR5 cells and the expression of Faswas markedly increased in both transcriptional and translational levels in A549 cells. SGBPT treatment partially induced the expression of Bcl-2, Bcl-XL and the expression of Bid was markedly decreased in translational levels in A549 cells. However, SGBPT treatment did not affect the expression of IAP family in A549 orNCI-H460 cells. SGBPT treatment partially induced the expression of caspase-3, caspase-8, caspase-9 activity which markedly increased in a dose-dependent manners in A549 cells. The fragmental development of PARP and ${\beta}$-catenin protein was observed in A549 cells by SGBPT treatment. SGBPT treatment induced the expression of PLC-${\gamma}1$ protein which decreased in A549 cells. SGBPT treatment partially induced the expression of DFF45/ICAD which markedly increased in a dose-dependent manner in A549 cells. Taken together. these findings suggested that SGBPT-induced inhibition of human lung carcinoma did not affect NCI-H460 cell growth. However, SGBPT-induced inhibition of human lung carcinoma A549 cell growth was associated with the induction of death receptor and mitochondrial pathway. The results provided important new insights into the possible molecular mechanisms of the anti-cancer activity of SGBPT.

  • PDF

Involvement of Cdc25c in Cell Cycle Alteration of a Radioresistant Lung Cancer Cell Line Established with Fractionated Ionizing Radiation

  • Li, Jie;Yang, Chun-Xu;Mei, Zi-Jie;Chen, Jing;Zhang, Shi-Min;Sun, Shao-Xing;Zhou, Fu-Xiang;Zhou, Yun-Feng;Xie, Cong-Hua
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.10
    • /
    • pp.5725-5730
    • /
    • 2013
  • Cancer patients often suffer from local tumor recurrence after radiation therapy. Cell cycling, an intricate sequence of events which guarantees high genomic fidelity, has been suggested to affect DNA damage responses and eventual radioresistant characteristics of cancer cells. Here, we established a radioresistant lung cancer cell line, A549R, by exposing the parental A549 cells to repeated ${\gamma}$-ray irradiation with a total dose of 60 Gy. The radiosensitivity of A549 and A549R was confirmed using colony formation assays. We then focused on examination of the cell cycle distribution between A549 and A549R and found that the proportion of cells in the radioresistant S phase increased, whereas that in the radiosensitive G1 phase decreased. When A549 and A549R cells were exposed to 4 Gy irradiation the total differences in cell cycle redistribution suggested that G2-M cell cycle arrest plays a predominant role in mediating radioresistance. In order to further explore the possible mechanisms behind the cell cycle related radioresistance, we examined the expression of Cdc25 proteins which orchestrate cell cycle transitions. The results showed that expression of Cdc25c increased accompanied by the decrease of Cdc25a and we proposed that the quantity of Cdc25c, rather than activated Cdc25c or Cdc25a, determines the radioresistance of cells.

Anti-proliferative Effects of Cheonkumwikyung-tang In A549 Human Lung Carcinoma Cells (천금위경탕의 인체 폐암세포 증식억제에 관한 연구)

  • Park Bong Kyu;Park Dong Il
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.18 no.4
    • /
    • pp.1147-1152
    • /
    • 2004
  • To investigate the anti-cancer effects of aqueous extract of Cheonkumwikyung-tang (CKWKT) on the growth of human lung carcinoma cell line A549, we performed various biochemical experiments such as the effects of CKWKT on the cell proliferation and viability, the morphological changes, the effects on expression of apoptosis and cell growth-regulatory gene products. Results obtained are as follow; CKWKT treatment declined the cell viability and proliferation of A549 cells in a concentration-dependent manner. The anti-proliferative effect by CKWKT treatment in A549 cells was associated with morphological changes such as membrane shrinking and cell rounding up. CKWKT treatment induced apoptotic cell death of A549 cells in a concentration-dependent manner, which was associated with inhibition and/or degradation of apoptotic target proteins such poly(ADP-ribose) polymerase, β-catenin and phospholipase C-γ1. Western blot analysis revealed that the levels cyclin-dependent kinase inhibitor p21 expression were induced by CKWKT treatment in A549 cells. Taken together, these findings suggest that CKWKT-induced inhibition of human lung cancer cell proliferation is associated with the induction of apoptotic cell death via regulation of several major growth regulatory gene products and CKWKT may have therapeutic potential in human lung cancer.

Studies of the Anti-cancer Effects of Bistortae Rhizoma (권삼(拳蔘)의 항암효과에 대한 연구)

  • Kim, June-Beom;Han, Hyo-Sang;Lee, Young-Jong
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.23 no.5
    • /
    • pp.1139-1144
    • /
    • 2009
  • This study was purposed to research the anti-cancer effects of Bistortae Rhizoma. A total extract of Bistortae Rhizoma decoction was prepared. By measuring the cell proliferation, apoptosis, morphology and cytokine level from the extracts, the influence on HepG2 cell, SNU-1 cell and A549 cell was compared. The Bistortae Rhizoma decoction extract did not control HepG2 cell proliferation but controlled SNU-1 cell and A549 cell proliferation. In particular, the inhibitory effect on SNU-1 cell proliferation was highest. The Bistortae Rhizoma decoction extract showed to increase the apoptosis of the HepG2 ceil, SNU-1 cell and A549 cell in a dose-dependent manner. In particular, the promotion effect of the apoptosis was highest in SNU-1 cell. Among the various fraction extracts of the Bistortae Rhizoma decoction, n-BuOH extraction showed the greatest increase of the apoptosis of the HepG2 cell. The Bistortae Rhizoma decoction extract decreased dose-dependently the secretion of the TGF-$\beta$ in the HepG2 cell, SNU-1 cell and A549 cell and increased the secretion of the TNF-$\alpha$ and the IFN-$\gamma$. These results suggest that the total extract of Bistortae Rhizoma decoction has anti-cancer effect against SNU-1 cell and A549 cell.

Anti-cell Adhesive Effect of Phenylacetylshikonin Analogues Related to their Cytotoxicity in A549 Cells

  • Kim, Seon-Hee;Song, Gyu-Yong;Sok, Dai-Eun;Ahn, Byung-Zun
    • Archives of Pharmacal Research
    • /
    • v.20 no.2
    • /
    • pp.155-157
    • /
    • 1997
  • An attempt to estabilish the relationship between anti-cell adhesive action of phenylacetylshikonin analogues and their cytotoxicity against A549 cells was done. In the one hour incubation with A549 cells,${\alpha}$-methoxyphenylacetyl-(9), ${\alpha}$-acetoxyphenylacetyl-(13), 3,4-methylenedioxyphenylacetyl-(15) and 4-(N,N-dimethylamino)-phenylacetylshikonin (17) analogues showed a high anti-cell adhesive activity $(IC_100; value, 4-8{\mu}g/ml)$, while halophenylacetyl- and dimethoxy- or trimethoxyphenylacetyl analogues expressed no activity at $40{\mu}g/ml$, indicating that the presence of a bulky group at $ C^I-{\alpha}$ and a polar group at C-4 of phenylacetyl moiety may be important. A similar structure activity relationship exists for the 48 hr cytotoxocity $(ED_{50})$ of phenylacetylshikonin analogues in A 549 cells, but not in either K562 or L1210 cells. Furthermore, the difference between $IC_{100}$ values for anti-cell adhesive activity and$ED_{50}$ values for cytotoxicity of potent compound in A549 cells was not so great (1.5 to 3 times). Based on these observations, it is proposed that the anti-cell adhesive action of phenylacetylshikonins might be responsible for their cytotoxicity in A549 cells.

  • PDF

Tetrazolium Violet Induced Apoptosis and Cell Cycle Arrest in Human Lung Cancer A549 Cells

  • Zhang, Xiao-Hong;Zhang, Nan;Lu, Jian-Mei;Kong, Qing-Zhong;Zhao, Yun-Feng
    • Biomolecules & Therapeutics
    • /
    • v.20 no.2
    • /
    • pp.177-182
    • /
    • 2012
  • Tetrazolium violet is a tetrazolium salt and has been proposed as an antitumor agent. In this study, we reported for the first time that tetrazolium violet not only inhibited human lung cancer A549 cell proliferation but also induced apoptosis and blocked cell cycle progression in the G1 phase. The results showed that tetrazolium violet significantly decreased the viability of A549 cells at $5-15{\mu}M$. Tetrazolium violet -induced apoptosis in A549 cells was confirmed by H33258 staining assay. In A549, tetrazolium violet blocked the progression of the cell cycle at G1 phase by inducing p53 expression and further up-regulating p21/WAF1 expression. In addition, an enhancement in Fas/APO-1 and its two forms of ligands, membrane-bound Fas ligand (mFasL) and soluble Fas ligand (sFasL), as well as caspase, were responsible for the apoptotic effect induced by tetrazolium violet. The conclusion of this study is that tetrazolium violet induced p53 expression which caused cell cycle arrest and apoptosis. These findings suggest that tetrazolium violet has strong potential for development as an agent for treatment lung cancer.

Effect of Scutellariae Radix Extract on the release of chemokines induced by $TNF-{\alpha}$ and IL-4 in A549 cells (황금이 A549 세포주에서 $TNF-{\alpha}$ 및 IL-4로 유도된 chemokines에 미치는 영향)

  • Kim, Sung-Ho;Kim, Hee-Taek
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.20 no.2 s.33
    • /
    • pp.108-115
    • /
    • 2007
  • Objectives : In the present study, the effect of Scutellariae radix on the release of RANTES, eotaxin, TARC induced by $TNF-{\alpha}$ and IL-4 in human bronchial epithelial cell(A549 cell) was examined. Scutellariae radix significantly inhibited the secretion of RANTES, eotaxin, TARC with a dose-dependant manner. Methods : In the experiment, to observe the toxity of the cell according to concentration of Scutellariae radix, MIT assay was carried out to examine cell viability. The effective dosage did not have the cytotoxicity on human bronchial epithelial cell in all control group excepting 50\;{\mu}g/ml$ concentration. Results : The above results shows Scutellariae radix inhibits the secretion of the release of RANTES, eotaxin, TARC on human bronchial epithelial cell(A549 cell). Conclusion : These results suggest that Scutellariae radix could be used as a prophylaxis and remedy of asthma induced by allergy and inflammatory reaction caused by several reasons.

  • PDF

Induction of Apoptosis by Samgibopae-tang in Human Non-small-cell Lung Cancer Cells (인체폐암세포 NCI-H460 및 A549의 증식에 미치는 삼기보폐탕의 영향 비교)

  • Heo, Man-Kyu;Park, Cheol;Choi, Young-Hyun;Kam, Cheol-Woo;Park, Dong-Il
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.21 no.4
    • /
    • pp.973-981
    • /
    • 2007
  • In the present study, we investigated the antiproliferative activity of the water extract of Samgibopae-tang (SGBPT) in NCI-H460 and A549 non-small-cell lung cancer cell lines. We found that exposure of A549 cells to SGBPT resulted in the growth inhibition in a dose-dependent manner as measured by MTT assay, however SGBPT did not affect the growth of NCI-H460 cells. The antiproliferative effect by SGBPT treatment in A549 cells was associated with morphological changes such as membrane shrinking and cell rounding up. SGBPT treatment did not induce the cell cycle arrest in both cell lines, however the frequency of sub-G1 population was concentration-dependently increased by SGBPT treatment in A549 cells. SGBPT treatment partially induced the expression of tumor suppressor p53 in A549 cells and the expression of cyclin-dependent kinase inhibitor p21(WAF1/CIP1) was markedly increased in both transcriptional and translational levels in A549 cells. The up-regulation of p21 by SGBPT occurred in a similar a concentration dependent manner to that observed with the inhibition of cell viability and induction of sub-G1 population of the cell cycle. However SGBPT treatment did not affect other growth regulation-related genes such as early growth response-1 (Egr-1), nonsteroidal anti-inflammatory drug-activated gene-1 (NAG-1), inducible nitric oxide synthease (iNOS), cyclooxygenases (COXs), telomere-regulatory factors in A549 as well as NCI-H460 cells. Taken together, these findings suggested that SGBPT-induced inhibition of human lung carcinoma A549 cell growth was aoosciated with the induction of p21 and the results provided important new insights into the possible molecular mechanisms of the anti-cancer activity of SGBPT.