• Title/Summary/Keyword: AMPA receptor

Search Result 54, Processing Time 0.026 seconds

Electrophysiological Characterization of AMPA and NMDA Receptors in Rat Dorsal Striatum

  • Jeun, Seung-Hyun;Cho, Hyeong-Seok;Kim, Ki-Jung;Li, Qing-Zhong;Sung, Ki-Wug
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.13 no.3
    • /
    • pp.209-214
    • /
    • 2009
  • The striatum receives glutamatergic afferents from the cortex and thalamus, and these synaptic transmissions are mediated by ${\alpha}$-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) and N-methyl D-aspartate (NMDA) receptors. The purpose of this study was to characterize glutamate receptors by analyzing NMDA/AMPA ratio and rectification of AMPA and NMDA excitatory postsynaptic currents (EPSCs) using a whole-cell voltage-clamp method in the dorsal striatum. Receptor antagonists were used to isolate receptor or subunit specific EPSC, such as (DL)-2-amino-5-phosphonovaleric acid (APV), an NMDA receptor antagonist, ifenprodil, an NR2B antagonist, CNQX, an AMPA receptor antagonist and IEM-1460, a GluR2-lacking AMPA receptor blocker. AMPA and NMDA EPSCs were recorded at - 70 and + 40 mV, respectively. Rectification index was calculated by current ratio of EPSCs between + 50 and - 50 mV. NMDA/AMPA ratio was 0.20${\pm}$0.05, AMPA receptor ratio of GluR2-lacking/GluR2-containing subunit was 0.26${\pm}$0.05 and NMDA receptor ratio of NR2B/NR2A subunit was 0.32${\pm}$0.03. The rectification index (control 2.39${\pm}$0.27) was decreased in the presence of both APV and combination of APV and IEM-1460 (1.02${\pm}$0.11 and 0.93${\pm}$0.09, respectively). These results suggest that the major components of the striatal glutamate receptors are GluR2-containing AMPA receptors and NR2A-containing NMDA receptors. Our results may provide useful information for corticostriatal synaptic transmission and plasticity studies.

Psychiatric Implication for the Regulation of AMPA Receptor (AMPA 수용체의 조절이 지니는 정신과적 의의)

  • Oh, Daeyoung;Lee, Eunee
    • Korean Journal of Biological Psychiatry
    • /
    • v.20 no.1
    • /
    • pp.1-5
    • /
    • 2013
  • Glutamate receptors are important components of synaptic transmission in the nervous system. Especially, ${\alpha}$-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors mediate most abundant excitatory synaptic transmission in the brain. There is elaborate mechanism of regulation of AMPA receptors including protein synthesis/degradation, intracellular trafficking, exocytosis/endocytosis and protein modification. In recent studies, it is revealed that functional dysregulation of AMPA receptors are related to major psychiatric disorders. In this review, we describe the structure and function of AMPA receptors in the synapse. We will introduce three steps of mechanism involving trafficking of AMPA receptors to neuronal membrane, lateral diffusion into synapses and synaptic retention by membrane proteins and postsynaptic scaffold proteins. Lastly, we will describe recent studies showing that regulation of AMPA receptors is important pathophysiological mechanism in psychiatric disorders.

Antidepressant-like Effects of the Gastrodia elata Bl Extract in Mice

  • Hong, Soon-Sang;Cho, Seung-Hun
    • Journal of Oriental Neuropsychiatry
    • /
    • v.24 no.3
    • /
    • pp.281-292
    • /
    • 2013
  • Objectives : A growing body of evidence has suggested that the dysfunction of glutamatergic systems plays a pivotal role in major depressive disorder (MDD). This study was performed to investigate the antidepressant-like effects of the ethanolic extract of Gastrodia elata Bl (GE) in mouse models and to investigate the role of ${\alpha}$-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) receptors in producing these antidepressant-like effects. Methods : The forced swim test (FST) and tail suspension test (TST) were used to investigate GE's behavioral effects in mice. Additional biochemical and behavioral experiments with NBQX, an AMPA receptor antagonist, were undertaken to determine whether the antidepressant-like properties of GE are involved in AMPA receptor throughput. Results : Oral administration of GE extract (1,600 mg/kg) 1h prior to testing significantly reduced the immobility times in the FST and TST. These antidepressant-like effects of GE extract were increased dose-dependently. Pre-treatment with NBQX significantly attenuated the reduction in immobility time induced by the GE extract in the FST and TST. Conclusions : The ethanolic extract of GE may exert antidepressant-like effects with involvement of AMPA receptor.

The Involvement of AMPA Receptor in the Antidepressant-like Effects of the Portulaca Oleracea L. Extract in Mice

  • Park, Soo-Jin;Choi, Min-Ji;Chung, Sun-Yong;Kim, Jong-Woo;Cho, Seung-Hun
    • Journal of Oriental Neuropsychiatry
    • /
    • v.24 no.3
    • /
    • pp.271-280
    • /
    • 2013
  • Objectives : The development of natural drugs with antidepressant effects is important and needed. This study was performed to investigate the antidepressant-like effects of the distilled water extract of Portulaca oleracea L. (POL) in a mouse model and to investigate the role of ${\alpha}$-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) receptors in producing these antidepressant-like effects. Methods : The forced swim test (FST) and tail suspension test (TST) were used to investigate the behavioral anti-depressive-like effects of POL in mice. Additional behavioral experiments with 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo[f]quinoxaline-2,3-dione, an AMPA receptor antagonist, were undertaken to determine the involvement of the antidepressant-like properties of POL in AMPA receptor throughput. Results : Oral administration of the POL extract (100 mg/kg) 1 h prior to testing significantly reduced the immobility times in the FST and TST. The antidepressant-like effects of the POL extract were not increased in a dose-dependent manner. Pre-treatment with NBQX significantly attenuated the reduction in immobility time induced by the POL extract in the FST. Conclusions : The distilled water extract of POL has antidepressant-like effects, which may be related to AMPA receptor. Pre-treatment with NBQX significantly attenuates the reduction in immobility time induced by the POL extract in the FST.

Inhibitory and Excitatory Postsynaptic Currents of Medial Vestibular Nucleus Neurons of Rats

  • Chun, Sang-Woo;Choi, Jeong-Hee;Park, Byung-Rim
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.7 no.2
    • /
    • pp.59-63
    • /
    • 2003
  • The medial vestibular nucleus (MVN) neurons are controlled by excitatory synaptic transmission from the vestibular afferent and commissural projections, and by inhibitory transmission from interneurons. Spontaneous synaptic currents of MVN neurons were studied using whole cell patch clamp recording in slices prepared from 13- to 17-day-old rats. The spontaneous inhibitory postsynaptic currents (sIPSCs) were significantly reduced by the $GABA_A$ antagonist bicuculline ($20{\mu}M$), but were not affected by the glycine antagonist strychnine ($1{\mu}M$). The frequency, amplitude, and decay time constant of sIPSCs were $4.3{\pm}0.9$ Hz, $18.1{\pm}2.0$ pA, and $8.9{\pm}0.4$ ms, respectively. Spontaneous excitatory postsynaptic currents (sEPSCs) were mediated by non-NMDA and NMDA receptors. The specific AMPA receptor antagonist GYKI-52466 ($50{\mu}M$) completely blocked the non-NMDA mediated sEPSCs, indicating that they are mediated by an AMPA-preferring receptor. The AMPA mediated sEPSCs were characterized by low frequency ($1.5{\pm}0.4$ Hz), small amplitude ($13.9{\pm}1.9$ pA), and rapid decay kinetics ($2.8{\pm}0.2$ ms). The majority (15/21) displayed linear I-V relationships, suggesting the presence of GluR2-containing AMPA receptors. Only 35% of recorded MVN neurons showed NMDA mediated currents, which were characterized by small amplitude and low frequency. These results suggest that the MVN neurons receive excitatory inputs mediated by AMPA, but not kainate, and NMDA receptors, and inhibitory transmission mediated by $GABA_A$ receptors in neonatal rats.

Immunohistochemical detection of GluA1 subunit of AMPA receptor in the rat nucleus accumbens following cocaine exposure

  • Cai, Wen Ting;Han, Joonyeup;Kim, Wha Young;Kim, Jeong-Hoon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.25 no.1
    • /
    • pp.79-85
    • /
    • 2021
  • α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors are differentially regulated in the nucleus accumbens (NAcc) of the brain after cocaine exposure. However, these results are supported only by biochemical and electrophysiological methods, but have not been validated with immunohistochemistry. To overcome the restriction of antigen loss on the postsynaptic target molecules that occurs during perfusion-fixation, we adopted an immersion-fixation method that enabled us to immunohistochemically quantify the expression levels of the AMPA receptor GluA1 subunit in the NAcc. Interestingly, compared to saline exposure, cocaine significantly increased the immunofluorescence intensity of GluA1 in two sub-regions, the core and the shell, of the NAcc on withdrawal day 21 following cocaine exposure, which led to locomotor sensitization. Increases in GluA1 intensity were observed in both the extra-post synaptic density (PSD) and PSD areas in the two sub-regions of the NAcc. These results clearly indicate that AMPA receptor plasticity, as exemplified by GluA1, in the NAcc can be visually detected by immunohistochemistry and confocal imaging. These results expand our understanding of the molecular changes occurring in neuronal synapses by adding a new form of analysis to conventional biochemical and electrophysiological methods.

Glutamate Receptor-interacting Protein 1 Protein Binds to the Armadillo Family Protein p0071/plakophilin-4 in Brain (Glutamate receptor-interacting protein 1 단백질과 armadillo family 단백질 p0071/plakophilin-4와의 결합)

  • Moon, Il-Soo;Seog, Dae-Hyun
    • Journal of Life Science
    • /
    • v.19 no.8
    • /
    • pp.1055-1061
    • /
    • 2009
  • ${\alpha}$-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptors are widespread throughout the central nervous system and appear to serve as synaptic receptors for fast excitatory synaptic transmission mediated by glutamate. Their modulation is believed to affect learning and memory. To identify the interaction proteins for the AMPA receptor subunit glutamate receptor-interacting protein 1 (GRIPl), GRIP1 interactions with armadillo family protein p0071/plakophilin-4 were investigated. GRIP1 protein bound to the tail region of p0071/plakophilin-4 but not to other armadillo family protein members in a yeast two-hybrid assay. The "S-X-V" motif at the carboxyl (C)-terminal end of p0071/plakophilin-4 is essential for interaction with GRIP1. p0071/plakophilin-4 interacted with the Postsynaptic density-95/Discs large/Zona occludens-1 (PDZ) domains of GRIPI in the yeast two-hybrid assay, as is indicated also by Glutathione S-transferase (GST) pull-down, and co-immunoprecipitated with GRIP1 antibody in brain fraction. The findings of this study provide evidence that p0071/plakophilin-4 is an interactor of GRIP1.

NMDA-type Glutamatergic Modulation in Dopaminergic Activation Measured by Apomorphine-Induced Cage Climbing Behaviors

  • Jang, Choon-Gon;Lee, Seok-Yong
    • Archives of Pharmacal Research
    • /
    • v.24 no.6
    • /
    • pp.613-617
    • /
    • 2001
  • The present study examined the hypothesis that NMDA, AMPA/Kainate, and metabotropic (mGlu) glutamate receptors contribute to a behavioral stimulation induced by activation of dopamine receptors by comparing responses in apomorphine-induced cage climbing behaviors in mice. MK-801, CNQX, and MCPG were served as the NMDA receptor, AMPA/Kainate receptor, and mGlu receptor antagonist, respectively, to elucidate the glutamatergic modulation in apomorphine-induced eopaminergic activation in mice. Drugs were administered intracerebroventricularly (i.c.v.) into the mouse brain 15 min before the apomorphine treatment (2 mg/kg, s.c.). 1.c.v. injection of MK-801 inhibited the apomorphine-induced cage climbing behavior dose-dependently. However, treatments with CNQX and MCPG did not any significant change in apomorphine-induced cage climbing behavior in mice. These results suggest that stimulation of NMDA type of glutamate receptors could contribute to the dopaminergic sti mutation, but not AMPA/Kainate and mGlu type glutamate receptors.

  • PDF

Effect of Antioxidant and Ampa/kainate Receptor Antagonist on Cerebral Neurons Damaged by Ischemia (허혈이 유도된 대뇌신경세포에 대한 항산화제 및 Ampa/kainate 수용체 길항제의 영향)

  • Oh, Yeon-Kyun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.19 no.4
    • /
    • pp.1022-1026
    • /
    • 2005
  • To clarify the toxic effect on cultured neonatal mouse cerebral neurons damaged by ischemia, we examined the cytotoxicity induced by ischemia and the protective effect of antioxidant and AMPA/kainate receptor antagonist against ischemia-induced cytotoxicity on cultured cerebral neurons. For this study, mice were administrated with 20ug/kg cyclothiazide or 50U/kg vitamin E via intraperitoneal injection for 2 hours before ischemic induction. After cell culture for 7 days, cell viability, amount of neurofilament and protein kinase C activity were examined. Ischemia decreased significantly cell viability, amount of neurofilament and the increase of protein kinase C activity in these cultures. In the protective effect, vitamin I showed remarkably the increase of cell viability and amount of neurofilament, and the decrease of protein kinase C activity but, cyclothiazide did not showed any protective effect on ischemia-induced cytotoxicity. From these results, it is suggested that vitamin I is effective in blocking the neurotoxicity induced by ischemia, but cyclothiazide as a AMPA/kainate receptor antagonist is not.

Effects of Systemic and Intrathecal AMPA/KA Receptor Antagonist LY293558 in a Rat Model for Postoperative Pain (절개통증모델에서 복강 및 척수강내로 투여된 AMPA/KA 수용체 길항제 LY293558의 효과)

  • Lee, Hae-Jin
    • The Korean Journal of Pain
    • /
    • v.13 no.1
    • /
    • pp.8-18
    • /
    • 2000
  • Background: Intraperitoneal (IP) and intrathecal (IT) administration of $\alpha$-amino-3-hydroxy-5-methyl-4-isoxazole-propionic (AMPA) and kainate (KA) receptor antagonist attenuate hyperalgesia in various models of persistent pain. The purpose of this study was to assess the effects of IP and IT LY293558, a novel AMPA/KA receptor antagonist on mechanical hyperalgesia after incision. Methods: Sprague-Dawley rats were anesthetized with halothane and underwent plantar incision. Two hours later, responses to mechanical stimuli were assessed using the response frequency to a nonpunctate mechanical stimulus and withdrawal threshold to calibrated von Frey filaments. One group of rats received vehicle, 5 or 10 mg/kg of LY293558 IP. In the other group, vehicle, 0.2, 0.5 or 2 nmol of LY293558 was administered IT. Ataxia and motor function were also evaluated. Results: Hyperalgesia was persistent in both the vehicle and 5 mg/kg group. IP administration of 10 mg/kg of LY293558 increased withdrawal threshold at 30 and 60 min after incision; deficits in rotorod performance were observed at 30, 60, 90 and 150 min. IT administration of 0.5 nmol of LY293558 increased the median withdrawal threshold at 30 and 60 min. Motor function was only impaired at 30 min. IT administration of 2 nmol produced hemiparesis. Again, inhibition of pain behaviors outlasted the effects on motor function. Conclusions: These data further suggest AMPA/KA receptors are important for the maintenance of pain behaviors caused by incisions. IT administration of LY293558 was more effective than systemic administration and reducing pain behaviors caused by a surgical incision.

  • PDF