• Title/Summary/Keyword: Anaerobic Rumen Fungi

Search Result 20, Processing Time 0.021 seconds

Effect of Fungal Elimination on Bacteria and Protozoa Populations and Degradation of Straw Dry Matter in the Rumen of Sheep and Goats

  • Li, D.B.;Hou, X.Z.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.1
    • /
    • pp.70-74
    • /
    • 2007
  • An in vitro study was carried out to investigate the differences in rumen microbes and fiber degradation capacity between sheep and goats. Three local male sheep and three Inner Mongolia male cashmere goats (aged 1.5 to 2 years; weight 25.0 to 32.0 kg) were each fitted with a permanent rumen cannula used to provide rumen fluid. Cycloheximide was used to eliminate rumen anaerobic fungi. The results showed that the quantities of fungal zoospores in the culture fluid of the control group were significantly greater in the sheep than in the goats; however, bacteria and protozoa counts were significantly higher in goats than in sheep. The digestibility of straw dry matter did not differ significantly between the two species before elimination of fungi, but tended to be higher for sheep (55.4%) than for goats (53.3%). The results also indicated that bacteria counts increased significantly after elimination of anaerobic fungi; however, the digestibility of straw dry matter significantly decreased by 12.1% and 8.6% for sheep and goats respectively. This indicated that the anaerobic fungi of the rumen played an important role in degradation of fiber.

Role and Potential of Ruminal Fungi in Fiber Digestion - Review -

  • Ushida, K.;Matsui, H.;Fujino, Yuko;Ha, J.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.10 no.6
    • /
    • pp.541-550
    • /
    • 1997
  • Anaerobic chytridiomycete fungi are now well recognized as one of the major components of rumen microflora. Since the discovery of anaerobic fungi, the knowledge upon their morphology and physiology has been accumulated. It is certain that they gave roles in ruminal fiber digestion, although their quantitative contribution to rumen digestion is still unclear. Their role in fiber digestion is complicated by the dietary factors and the interaction with other microorganisms. We aim at reviewing such information in this article. Considerable attention gas been paid to the polysaccharidase of these fungi. Analysis on the fungal genes encoding these enzymes has been performed in several laboratories. This article also covers the genetical analysis of fungal polysaccharidases.

Production of Citrate by Anaerobic Fungi in the Presence of Co-culture Methanogens as Revealed by 1H NMR Spectrometry

  • Cheng, Yan Fen;Jin, Wei;Mao, Sheng Yong;Zhu, Wei-Yun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.10
    • /
    • pp.1416-1423
    • /
    • 2013
  • The metabolomic profile of the anaerobic fungus Piromyces sp. F1, isolated from the rumen of goats, and how this is affected by the presence of naturally associated methanogens, was analyzed by nuclear magnetic resonance spectroscopy. The major metabolites in the fungal monoculture were formate, lactate, ethanol, acetate, succinate, sugars/amino acids and ${\alpha}$-ketoglutarate, whereas the co-cultures of anaerobic fungi and associated methanogens produced citrate. This is the first report of citrate as a major metabolite of anaerobic fungi. Univariate analysis showed that the mean values of formate, lactate, ethanol, citrate, succinate and acetate in co-cultures were significantly higher than those in the fungal monoculture, while the mean values of glucose and ${\alpha}$-ketoglutarate were significantly reduced in co-cultures. Unsupervised principal components analysis revealed separation of metabolite profiles of the fungal mono-culture and co-cultures. In conclusion, the novel finding of citrate as one of the major metabolites of anaerobic fungi associated with methanogens may suggest a new yet to be identified pathway exists in co-culture. Anaerobic fungal metabolism was shifted by associated methanogens, indicating that anaerobic fungi are important providers of substrates for methanogens in the rumen and thus play a key role in ruminal methanogenesis.

Effect of Grass Lipids and Long Chain Fatty Acids on Cellulose Digestion by Pure Cultures of Rumen Anaerobic Fungi, Piromyces rhizinflata B157 and Orpinomyces joyonii SG4

  • Lee, S.S.;Ha, J.K.;Kim, K.H.;Cheng, K.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.1
    • /
    • pp.23-30
    • /
    • 2000
  • The effects of grass lipids and long chain fatty acids (LCFA; palmitic, stearic and oleic acids), at low concentrations (0.001~0.02%), on the growth and enzyme activity of two strains of anaerobic fungi, monocentric strain Piromyces rhizinflata B157 and polycentric strain Orpinomyces joyonii SG4, were investigated. The addition of grass lipids to the medium significantly (p<0.05) decreased filter paper (FP) cellulose digestion, cellulase activity and fungal growth compared to control treatment. However, LCFA did not have any significant inhibitory effects on fungal growth and enzyme activity, which, however, were significantly (p<0.05) stimulated by the addition of oleic acid as have been observed in rumen bacteria and protozoa. This is the first report to our knowledge on the effects of LCFA on the rumen anaerobic fungi. Continued work is needed to identify the mode of action of LCFA in different fungal strains and to verify whether these microorganisms have ability to hydrogenate unsaturated fatty acids to saturated fatty acids.

The Role of Rumen Fungi in Fibre Digestion - Review -

  • Ho, Y.W.;Abdullah, N.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.12 no.1
    • /
    • pp.104-112
    • /
    • 1999
  • Since the anaerobic rumen fungi were discovered in the rumen of a sheep over two decades ago, they have been reported in a wide range of herbivores fud on high fibre diets. The extensive colonisation and degradation of fibrous plant tissues by the fungi suggest that they have a role in fibre digestion. All rumen fungi studied so far are fibrolytic. They produce a range of hydrolytic enzymes, which include the cellulases, hemicellulases, pectinases and phenolic acid esterases, to enable them to invade and degrade the lignocellulosic plant tissues. Although rumen fungi may not seem to be essential to general rumen function since they may be absent in animals fed on low fibre diets, they, nevertheless, could contribute to the digestion of high-fibre poor-quality forages.

The Effect of Saturated Fatty Acids on Cellulose Digestion by the Rumen Anaerobic Fungus, Neocallimatix frontalis C5-1

  • Ha, J.K.;Lee, S.S.;Gao, Z.;Kim, C.-H.;Kim, S.W.;Ko, Jong Y.;Cheng, K.-J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.7
    • /
    • pp.941-946
    • /
    • 2001
  • The effects of various concentrations of saturated fatty acids (SFA; caprylic, capric and stearic acids) on the growth of the anaerobic fungus, Neocallimastix frontalis C5-1 isolated from the rumen of a Korean native goat were investigated. At higher concentrations of fatty acids (0.1%, w/v), the addition of SFA strongly decreased filter paper (FP) cellulose digestion and polysaccharide-degrading enzyme activity. The sensitivity of the rumen anaerobic fungus to the added fatty acids increased in the following order: caprylic ($C_{8:0}$)>capric($C_{10:0}$)>stearic($C_{18:0}$) acid, although stearic acid had no significant (p<0.05) inhibitory effects at any of the concentrations tested. However, the addition of SFA at lower concentrations (0.01 and 0.001% levels), did not inhibit FP cellulose degradation and enzyme activity. Furthermore, although these parameters were slightly stimulated by the addition of SFA, they were not statistically different from control values. This is the first report examining the effects of fatty acids on anaerobic gut fungi. We found that the lower levels of fatty acids used in this experiment were able to stimulate the growth and specific enzyme activities of rumen anaerobic fungi, whereas the higher levels of fatty acids were inhibitory with respect to fungal cellulolysis.

COLONIZATION OF ALKALI-TREATED FIBROUS ROUGHAGES BY ANAEROBIC RUMEN FUNGI

  • Wuliji, T.;McManus, W.R.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.1 no.2
    • /
    • pp.65-71
    • /
    • 1988
  • This study reports light and electron microscope examination of rumen fungal colonization of alkali-treated roughage feeds incubated in decron bags in the rumen of cannulated sheep for varying time intervals. Six roughages, pre-treated with ammonium hydroxide or sodium hydroxide at 4% (w/w) level were examined together with untreated control samples. Alkali pre-treatment was associated with an earlier and more pronounced fungal colonization than all control roughages. Sodium hydroxide pre-treatment was significantly more effective than ammonium hydroxide in improving the susceptibility of roughages to rumen fungal colonization and studies by SEM showed that the pre-treatment permitted greater penetration of feeds by fungi. Sodium hydroxide pre-treatment also significantly increased dry matter disappearance from feed held in Dacron bags in the rumen with all feeds except Lucerne stem. It is not known to what extent fungal activity contributed to increased breakdown of the feeds.

Isolation and Characterization of Cellulolytic Anaerobic Fungi from the Guts of the Hanwoo Cattle and the Korean Native Goat (한우 및 산양의 장내 섬유소 분해 혐기 곰팡이의 분리 및 특성 구명)

  • Kim, C.H.;Lee, S.S.
    • Journal of Animal Science and Technology
    • /
    • v.45 no.6
    • /
    • pp.1019-1030
    • /
    • 2003
  • The study was conducted to isolate and identify highly fibrolytic anaerobic fungi from the guts of a Hanwoo steer and a Korean native goat, and then investigate the characterization of cellulolytic activity of an anaerobic fungus. Twenty-one anaerobic fungal colonies were isolated in the study, in which 16 colonies were isolated from the rumen contents of the Hanwoo steer and 5 colonies from the duodenal fluids of the Korean native goat. Four anaerobic fungi were selected based on higher cellulolytic enzyme activities to identify under a optical microscope. NLRI-M003 and -T004 belong to Neocallimastix genus and NLRI-M014 belongs to Piromyces genus based on the morphology of their thallus, sporangia, rhizoid and the number of flagella. NLRI-M001 appeared to be an unknown strain of anaerobic fungi due to its different morphology from existing types of anaerobic fungi, though the morpholgoy is similar to Orpinomyces sp. Supplementation of 2% anaerobic fungal culture(NLRI-M003) in rumen-mixed microorganisms increased in vitro DM degradability of rice straw and filter paper up to 4 and 11%, respectively, compared with non-supplementation(control). CMCase and xylanase activities in in vitro culture were also higher in 2% fungal supplementation than controls in both rice straw and filter paper substrates.

Effects of Non-ionic Surfactants on Enzyme Distributions of Rumen Contents, Anaerobic Growth of Rumen Microbes, Rumen Fermentation Characteristics and Performances of Lactating Cows

  • Lee, S.S.;Ahn, B.H.;Kim, H.S.;Kim, C.H.;Cheng, K.-J.;Ha, J.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.1
    • /
    • pp.104-115
    • /
    • 2003
  • A series of experiments was carried out to determine the possibility for the non-ionic surfactant (NIS) as a feed additive for ruminant animals. The effect of the NIS on (1) the enzyme distribution in the rumen fluids of Hereford bulls, (2) the growth of pure culture of rumen bacteria and (3) rumen anaerobic fungi, (4) the ruminal fermentation characteristics of Korean native cattle (Hanwoo), and (5) the performances of Holstein dairy cows were investigated. When NIS was added to rumen fluid at the level of 0.05 and 0.1% (v/v), the total and specific activities of cell-free enzymes were significantly (p<0.01) increased, but those of cell-bound enzymes were slightly decreased, but not statistically significant. The growth rates of ruminal noncellulolytic species (Ruminobacter amylophilus, Megasphaera elsdenii, Prevotella ruminicola and Selenomonas ruminantium) were significantly (p<0.01) increased by the addition of NIS at both concentrations tested. However, the growth rate of ruminal cellulolytic bacteria (Fibrobacter succinogenes, Ruminococcus albus, Ruminococcus flavefaciens and Butyrivibrio fibrisolvens) were slightly increased or not affected by the NIS. In general, NIS appears to effect Gram-negative bacteria more than Gram-positive bacteria; and non-cellulolytic bacteria more than cellulolytic bacteria. The growth rates of ruminal monocentric fungi (Neocallimastix patriciarum and Piromyces communis) and polycentric fungi (Orpinomyces joyonii and Anaeromyces mucronatus) were also significantly (p<0.01) increased by the addition of NIS at all concentrations tested. When NIS was administrated to the rumen of Hanwoo, Total VFA and ammonia-N concentrations, the microbial cell growth rate, CMCase and xylanase activities in the rumen increased with statistical difference (p<0.01), but NIS administration did not affect at the time of 0 and 9 h post-feeding. Addition of NIS to TMR resulted in increased TMR intake and increased milk production by Holstein cows and decreased body condition scores. The NEFA and corticoid concentrations in the blood were lowered by the addition of NIS. These results indicated that the addition of NIS may greatly stimulate the release of some kinds of enzymes from microbial cells, and stimulate the growth rates of a range of anaerobic ruminal microorganisms, and also stimulate the rumen fermentation characteristics and animal performances. Our data indicates potential uses of the NIS as a feed additive for ruminant animals.