• 제목/요약/키워드: Anticyclonic flow

검색결과 23건 처리시간 0.022초

측류판 표류실험에 의한 하계 울릉도${\cdot}$독도 근해의 해수유동 특성 (Drogue Tracking in the Coastal Waters of Ulreungdo-Tokto in Summer)

  • 장선덕;김종규
    • 한국수산과학회지
    • /
    • 제27권5호
    • /
    • pp.583-593
    • /
    • 1994
  • The East Korean Warm Current is known as an anticyclonic circulation in the Ulreung Basin in the southwestern East Sea of Korea. This circulation was approximately estimated by dynamic methods based on the oceanographic observation and remote sensing data. In this study, the existence of circulation in the anticyclonic region of East Korean Warm Current(Tsushima current) in early summer was directly measured by drogue tracking using a global positioning system. At the same time, the velocity was calculated by dynamic method and compared using data collected by remote sensing. As results, these values are shown to be nearly the same, and an anticyclonic circulation was found around Ulreungdo-Tokto. The maximum northward and southward flow speed was deduced to be around 0.6 and one knot, respectively.

  • PDF

한국에서 발생한 청천난류 사례들에 대한 수치연구 (A Numerical Study on Clear-Air Turbulence Events Occurred over South Korea)

  • 민재식;김정훈;전혜영
    • 대기
    • /
    • 제22권3호
    • /
    • pp.321-330
    • /
    • 2012
  • Generation mechanisms of the three moderate-or-greater (MOG)-level clear-air turbulence (CAT) encounters over South Korea are investigated using the Weather Research and Forecasting (WRF) model. The cases are selected among the MOG-level CAT events occurred in Korea during 2002-2008 that are categorized into three different generation mechanisms (upper-level front and jet stream, anticyclonic flow, and mountain waves) in the previous study by Min et al. For the case at 0127 UTC 18 Jun 2003, strong vertical wind shear (0.025 $s^{-1}$) generates shearing instabilities below the enhanced upper-level jet core of the maximum wind speed exceeding 50 m $s^{-1}$, and it induces turbulence near the observed CAT event over mid Korea. For the case at 2330 UTC 22 Nov 2006, areas of the inertia instability represented by the negative absolute vorticity are formed in the anticyclonically sheared side of the jet stream, and turbulence is activated near the observed CAT event over southwest of Korea. For the case at 0450 UTC 16 Feb 2003, vertically propagating mountain waves locally trigger shearing instability (Ri < 0.25) near the area where the background Richardson number is sufficiently small (0.25 < Ri < 1), and it induces turbulence near the observed CAT over the Eastern mountainous region of South Korea.

한국에서 발생한 청천난류 사례에서 나타나는 종관규모 대기상태에 대한 연구 (An Investigation of Synoptic Condition for Clear-Air Turbulence (CAT) Events Occurred over South Korea)

  • 민재식;전혜영;김정훈
    • 대기
    • /
    • 제21권1호
    • /
    • pp.69-83
    • /
    • 2011
  • The synoptic condition of clear-air turbulence (CAT) events occurred over South Korea is investigated, using the Regional Data Assimilation and Prediction System (RDAPS) data obtained from the Korea Meteorological Agency (KMA) and pilot reports (PIREPs) collected by Korea Aviation Meteorological Agency (KAMA) from 1 Dec. 2003 to 30 Nov. 2008. Throughout the years, strong subtropical jet stream exists over the South Korea, and the CAT events frequently occur in the upper-level frontal zone and subtropical jet stream regions where strong vertical wind shears locate. The probability of the moderate or greater (MOG)-level turbulence occurrence is higher in wintertime than in summertime, and high probability region is shifted northward across the jet stream in wintertime. We categorize the CAT events into three types according to their generation mechanisms: i) upper-level front and jet stream, ii) anticyclonically sheared and curved flows, and iii) breaking of mountain waves. Among 240 MOG-level CAT events reported during 2003-2008, 103 cases are related to jet stream while 73 cases and 25 cases are related to the anticyclonic shear flow and breaking of mountain wave, respectively.

수치모형을 통한 함평만과 해제반도 주변해역의 조류 및 조석잔차류 분포 (Tidal and tide-induced residual currents around Hampyung Bay and Hajae Peninsula by numerical simulation)

  • 추효상
    • 수산해양기술연구
    • /
    • 제56권2호
    • /
    • pp.114-125
    • /
    • 2020
  • In order to understand the currents around Hampyung Bay and Haeje Peninsula, 2D numerical simulations for tidal currents and tide-induced residual currents were carried out. Dominant semidiurnal tidal currents have reversing form and flow NNE-SSW from northern Haeje Peninsula to Songi Island, E-S at northern Haeje Peninsula and NNW-SSE in Hampyung Bay. In flood, a part of currents from Imja Island~Nakwhol Island flow along the main stream flowing northeast at offshore region and the rest flow into Hampyung Bay flowing east along the northern coast of Haeje Peninsula. In ebb, currents from Hampyung Bay flow west along the northern coast of Haeje Peninsula and run together with the main stream flowing southeast at offshore region. The currents create an anticyclonic circulation in flood and a cyclonic circulation in ebb around Haeje Peninsula including Hampyung Bay. Tidal currents are accumulated on Doripo which located at the entrance of Hampyung Bay and show high current velocities. Tidal currents and tide induced residual currents are weak at the inside of Hampyung Bay which has narrow entrance, shallow water depth and wide intertidal zone. An anticyclonic eddy is formed around Gaksi Island as a result of tide induced residual currents. In northern coast of Haeje Peninsula, slow constant currents flow east. It is expected that a gradual change of sediment and an increase of flushing time for suspended materials are carried by tidal currents occurring in Hampyung Bay.

Injection of an Intermediate Fluid into a Rotating Cylindrical Container Filled with Two-layered Fluid

  • Na, Jung-Yul;Hwang, Byong-Jun
    • Journal of the korean society of oceanography
    • /
    • 제31권4호
    • /
    • pp.173-182
    • /
    • 1996
  • A median-density fluid was injected into the upper layer of a two-layered fluid in a rotating cylindrical container. Several sets of the top and bottom boundary configurations were employed and the flow pattern of each layer including the injected fluid was observed to determine the factors that affect the path of the injected intermediate fluid. The axisymmetric path of the intermediate fluid when the upper layer had a free surface, changed into the asymmetric path with bulged-shape radial spreading whenever either the upper layer or the lower layer had ${\beta}$-effect. The internal Fronds number that controls the shape of the interface turned out to be the most important parameter that determines the radial spreading in terms of location and strength. When the upper and lower layer had the ${\beta}$-effect, convective overturning produced anticyclonic vortices at the frontal edge of the intermediate fluid, and that could enhance the vertical mixing of different density fluids. The intermediate fluid did not produce any topographic effect on the upper-layer motion during its spreading over the interface, since its thickness was very small. However, its anticyclonic motion within the bulged-shape produced a cyclonic motion in the lower layer just beneath the bulge.

  • PDF

Interdecadal Variation of Wintertime Blocking Frequency over the Siberia

  • Lee, Hyun-Soo;Jhun, Jong-Ghap;Kang, In-Sik;Moon, Byung-Kwon
    • 한국지구과학회지
    • /
    • 제28권5호
    • /
    • pp.556-562
    • /
    • 2007
  • The interdecadal variation of wintertime blocking frequency over the Siberia ($60^{\circ}E-140^{\circ}E$) is examined using the ECMWF/NCEP-NCAR re-analysis data for the period 1958-2006. The wintertime blocking frequency over the Siberia significantly decreased for the period 1986-2006, compared to the period 1958-1985, which is mainly due to the anomalous circulation of 500-hPa geopotential height field. During the period 1986-2006, there was enhancement in both the anomalous cyclonic flow over the western Siberia and the anomalous anticyclonic flow over the east Asia. These anomalous circulation patterns, which might be associated with changes in surface temperatures over the Asian continent, are suspected to playa possibly important role as an obstacle to the formation of blocking flow over the Siberia.

여자만 서수도 해역의 조류 및 조석평균류 특성 (Characteristics of tidal current and mean flow at the west channel of Yeoja Bay in the South Sea of Korea)

  • 추효상
    • 수산해양기술연구
    • /
    • 제55권3호
    • /
    • pp.252-263
    • /
    • 2019
  • In order to understand the tidal current and mean flow at the west channel of Yeoja Bay in the South Sea of Korea, numerical model experiments and vorticity analysis were carried out. The currents flow north at flood and south at ebb respectively and have the reversing form in the west channel. Topographical eddies are found in the surroundings of Dunbyong Island in the east of the channel. The flood currents flow from the waters near Naro Islands through the west channel and the coastal waters near Geumo Islands through the east channel. The ebb currents from the Yeoja Bay flow out along the west and the east channels separately. The south of Nang Island have weak flows because the island is located in the rear of main tidal stream. Currents are converged at ebb and diverged at flood in the northwest of Jeokgum Island. Tidal current ellipses show reversing form in the west channel but a kind of rotational form in the east channel. As the results of tide induced mean flows, cyclonic and anticyclonic topographical eddies at the northern tip but eddies with opposite spin at the southern tip are found in the west channel of Yeoja Bay. The topographical eddies around the islands and narrow channels are created from the vorticity formed at the land shore by the friction between tidal currents and the west channel.

동해남서해역 와류의 물리적구조 (Physical Structure of Eddies in the Southwestern East Sea)

  • 이흥재;변상경
    • 한국해양학회지
    • /
    • 제30권3호
    • /
    • pp.170-183
    • /
    • 1995
  • 1992년 11월부터 1993년 9월 사이 동해남서해역에서 조사한 인공위성 추적부 이, CTD, ADCP 자료를 이용하여 와류와 표층해류의 물리적 구조를 분석하였다. 부이의 이동궤적으로부터 울릉분지내에서 동한난류의 사행과 연구해역에서 다양한 크기의 시계방향과 반시계방향의 와류가 존재하는 것을 처음으로 직접 해류조사로 밝힐 수 있었다. 비교적 오래 지속되는 시계방향의 와류가 울릉분지내와 북부(일 본)분지의 남서쪽에서 관측된 반면에 반시계방향의 와류가 속초와 동해시 사이의 연안역에서 여름철에 관측되었다. 울릉분지의 와류는 적어도 관측기간 중에는 분지 내에 머물러 있었으며, 반시계방향의 와류는 냉수의 존재와 밀접한 관련이 있는 것 으로 나타났다. 북부분지의 시계방향 와류는 울릉분지의 것보다 크며 더 길쭉한 타원 형태를 지녔다. 울릉분지의 와류는 주축과 종축이 각각 120 km, 70 km이고, 회전주기는 13.6일, 평균회전속도는 24 cm/s, 평균 와동운동에너지는 392 $cm^{2}$/s$^{2}$ 이다. 북부분지의 와류는 주축과 종축이 각각 168 km, 86 km이고, 회전 주기는 14.9일, 평균회전속도는 29 cm/s, 평균 와동운동에너지는 629 $cm^{2}$/s/ sup 2/ 의 특성을 보였다. 와류의 평균이동속도는 두 경우 모두 약 3 cm/s이다. 울릉분지내에서 ADCP로 관측한 표층해류와 지형류의 상호일치는 울릉분지의 와류 가 지형평형을 이루고 있음을 시사한다. 관측된 와류는 해저지형에 강하게 지배 되어 있다.

  • PDF

The Analytic and Numerical Solutions of the 1$\frac{1}{2}$-layer and 2$\frac{1}{2}$-layer Models to the Strong Offshore Winds.

  • Lee, Hyong-Sun
    • Journal of the korean society of oceanography
    • /
    • 제31권2호
    • /
    • pp.75-88
    • /
    • 1996
  • The analytic and numerical solution of the 1$\frac{1}{2}$-layer and 2$\frac{1}{2}$-layer models are derived. The large coastal-sea level drop and the fast westward speed of the anticyclonic gyre due to strong offshore winds using two ocean models are investigated. The models are forced by wind stress fields similar in structure to the intense mountain-pass jets(${\sim}$20 dyne/$cm^{2}$) that appear in the Gulfs of Tehuantepec and Papagayo in the Central America for periods of 3${\sim}$7 days. Analytic and numerical solutions compare favorably with observations, the large sea-level drop (${\sim}$30 cm) at the coast and the fast westward propagation speeds (${\sim}$13 km/day) of the gyres. The coastal sea-level drop is enhanced by several factors: horizontal mixing, enhanced forcing, coastal geometry, and the existence of a second active layer in the 2$\frac{1}{2}$-layer model. Horizontal mixing enhances the sea-level drop because the coastal boundary layer is actually narrower with mixing. The forcing ${\tau}$/h is enhanced near the coast where h is thin. Especially, in analytic solutions to the 2$\frac{1}{2}$-layer model the presence of two baroclinic modes increases the sea-level drop to some degree. Of theses factors the strengthened forcing ${\tau}$/h has the largest effect on the magnitude of the drop, and when all of them are included the resulting maximum drop is -30.0 cm, close to observed values. To investigate the processes that influence the propagation speeds of anticyclonic gyre, several test wind-forced calculations were carried out. Solutions to dynamically simpler versions of the 1$\frac{1}{2}$-layer model show that the speed is increased both by ${\beta}$-induced self-advection and by larger h at the center ofthe gyres. Solutions to the 2$\frac{1}{2}$-layer model indicate that the lower-layer flow field advects the gyre westward and southward, significantly increasing their propagation speed. The Papagayo gyre propagates westward at a speed of 12.8 km/day, close to observed speeds.

  • PDF

Two Overarching Teleconnection Mechanisms Affecting the Prediction of the 2018 Korean Heat Waves

  • Wie, Jieun;Moon, Byung-Kwon
    • 한국지구과학회지
    • /
    • 제43권4호
    • /
    • pp.511-519
    • /
    • 2022
  • Given the significant social and economic impact caused by heat waves, there is a pressing need to predict them with high accuracy and reliability. In this study, we analyzed the real-time forecast data from six models constituting the Subseasonal-to-Seasonal (S2S) prediction project, to elucidate the key mechanisms contributing to the prediction of the recent record-breaking Korean heat wave event in 2018. Weekly anomalies were first obtained by subtracting the 2017-2020 mean values for both S2S model simulations and observations. By comparing four Korean heat-wave-related indices from S2S models to the observed data, we aimed to identify key climate processes affecting prediction accuracy. The results showed that superior performance at predicting the 2018 Korean heat wave was achieved when the model showed better prediction performance for the anomalous anticyclonic activity in the upper troposphere of Eastern Europe and the cyclonic circulation over the Western North Pacific (WNP) region compared to the observed data. Furthermore, the development of upper-tropospheric anticyclones in Eastern Europe was closely related to global warming and the occurrence of La Niña events. The anomalous cyclonic flow in the WNP region coincided with enhancements in Madden-Julian oscillation phases 4-6. Our results indicate that, for the accurate prediction of heat waves, such as the 2018 Korean heat wave, it is imperative for the S2S models to realistically reproduce the variabilities over the Eastern Europe and WNP regions.