• Title/Summary/Keyword: Auditory Stimulus

Search Result 111, Processing Time 0.022 seconds

The Effects of the Auditory Stimulus on Postural Control (자세제어에 대한 청각자극의 효과)

  • Kim, Y.;Jung, J.S.;Kim, N.G.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.05
    • /
    • pp.418-421
    • /
    • 1997
  • We examined the effect of the auditory stimulus on postural control. The auditory stimulus control system composed of 8 speakers ,the audio amplifier, the PPI interface and the sound controller. We measured the sway of head position and COP. Our result showed that the auditory stimulus was effective on postural control. It also indicated that the auditory stimulus system might be applied to clinical use as a new postural control training system.

  • PDF

Influence of Stimulus Polarity on the Auditory Brainstem Response From Level-Specific Chirp

  • Dzulkarnain, Ahmad Aidil Arafat;Salamat, Sabrina;Shahrudin, Fatin Amira;Jamal, Fatin Nabilah;Zakaria, Mohd Normani
    • Journal of Audiology & Otology
    • /
    • v.25 no.4
    • /
    • pp.199-208
    • /
    • 2021
  • Background and Objectives: No known studies have investigated the influence of stimulus polarity on the Auditory Brainstem Response (ABR) elicited from level-specific (LS) chirp. This study is important as it provides a better understanding of the stimulus polarity selection for ABR elicited from LS chirp stimulus. We explored the influence of stimulus polarity on the ABR from LS chirp compared to the ABR from click at 80 dBnHL in normal-hearing adults. Subjects and Methods: Nineteen adults with normal hearing participated. The ABRs were acquired using click and LS chirp stimuli using three stimulus polarities (rarefaction, condensation, and alternating) at 80 dBnHL. The ABRs were tested only on the right ear at a stimulus rate of 33.33 Hz. The ABR test was stopped when the recording reached the residual noise level of 0.04 μV. The ABRs amplitudes, absolute latencies, inter-peak latencies (IPLs), and the recorded number of averages were statistically compared among ABRs at different stimulus polarities and stimuli combinations. Results: Rarefaction polarity had the largest ABR amplitudes and SNRs compared with other stimulus polarities in both stimuli. There were marginal differences in the absolute latencies and IPLs among stimulus polarities. No significant difference in the number of averages required to reach the stopping criteria was found. Conclusions: Stimulus polarities have a significant influence on the ABR to LS chirp. Rarefaction polarity is recommended for clinical use because of its larger ABR peak I, III, and V amplitudes than those of the other stimulus polarities.

Influence of Stimulus Polarity on the Auditory Brainstem Response From Level-Specific Chirp

  • Dzulkarnain, Ahmad Aidil Arafat;Salamat, Sabrina;Shahrudin, Fatin Amira;Jamal, Fatin Nabilah;Zakaria, Mohd Normani
    • Korean Journal of Audiology
    • /
    • v.25 no.4
    • /
    • pp.199-208
    • /
    • 2021
  • Background and Objectives: No known studies have investigated the influence of stimulus polarity on the Auditory Brainstem Response (ABR) elicited from level-specific (LS) chirp. This study is important as it provides a better understanding of the stimulus polarity selection for ABR elicited from LS chirp stimulus. We explored the influence of stimulus polarity on the ABR from LS chirp compared to the ABR from click at 80 dBnHL in normal-hearing adults. Subjects and Methods: Nineteen adults with normal hearing participated. The ABRs were acquired using click and LS chirp stimuli using three stimulus polarities (rarefaction, condensation, and alternating) at 80 dBnHL. The ABRs were tested only on the right ear at a stimulus rate of 33.33 Hz. The ABR test was stopped when the recording reached the residual noise level of 0.04 μV. The ABRs amplitudes, absolute latencies, inter-peak latencies (IPLs), and the recorded number of averages were statistically compared among ABRs at different stimulus polarities and stimuli combinations. Results: Rarefaction polarity had the largest ABR amplitudes and SNRs compared with other stimulus polarities in both stimuli. There were marginal differences in the absolute latencies and IPLs among stimulus polarities. No significant difference in the number of averages required to reach the stopping criteria was found. Conclusions: Stimulus polarities have a significant influence on the ABR to LS chirp. Rarefaction polarity is recommended for clinical use because of its larger ABR peak I, III, and V amplitudes than those of the other stimulus polarities.

Temporal-perceptual Judgement of Visuo-Auditory Stimulation (시청각 자극의 시간적 인지 판단)

  • Yu, Mi;Lee, Sang-Min;Piao, Yong-Jun;Kwon, Tae-Kyu;Kim, Nam-Gyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.1 s.190
    • /
    • pp.101-109
    • /
    • 2007
  • In situations of spatio-temporal perception about visuo-auditory stimulus, researches propose optimal integration hypothesis that perceptual process is optimized to the interaction of the senses for the precision of perception. So, when the visual information considered generally dominant over any other sense is ambiguous, the information of the other sense like auditory stimulus influences the perceptual process in interaction with visual information. Thus, we performed two different experiments to certain the conditions of the interacting senses and influence of the condition. We consider the interaction of the visuo-auditory stimulation in the free space, the color of visual stimulus and sex difference of testee with normal people. In first experiment, 12 participants were asked to judge the change in the frequency of audio-visual stimulation using a visual flicker and auditory flutter stimulation in the free space. When auditory temporal cues were presented, the change in the frequency of the visual stimulation was associated with a perceived change in the frequency of the auditory stimulation as the results of the previous studies using headphone. In second experiment, 30 male and 30 female were asked to judge the change in the frequency of audio-visual stimulation using a color of visual flicker and auditory flutter stimulation. In the color condition using red and green. Both male and female testees showed same perceptual tendency. male and female testees showed same perceptual tendency however, in case of female, the standard deviation is larger than that of male. This results implies that audio-visual asymmetry effects are influenced by the cues of visual and auditory information, such as the orientation between auditory and visual stimulus, the color of visual stimulus.

Auditory Evoked Skin Potential in Normal Subjects (정상 성인에서 청성유발 피부전위)

  • Heo, Seung-Deok;Jung, Dong-Keun;Suh, Duk-Joon;Kim, Gwang-Nyeon;Kim, Gi-Ryon;Kang, Myung-Koo;Kim, Lee-Suk
    • Speech Sciences
    • /
    • v.12 no.2
    • /
    • pp.81-88
    • /
    • 2005
  • Electrodermal activity(EDA) is a bio-electric signal which occurs at the skin surface during the sweating. EDA reflects the activity of the sympathetic axis of the autonomic nervous system. EDA is associated with the eccrine sweat gland at the palmar and plamar surface. This study was aimed to characterize the relationship between EDA and auditory stimulus intensities. Acoustic stimulus used in this study were 500 Hz, 1 kHz, 2 kHz of narrow band noise, which were representative of speech frequencies in audible range. Stimulus intensity between 90 and 30 dB in 10 dB within dynamic range. After deriving the minimum stimulus intensity(threshold of skin potential) which elicited skin potential, and then the latency and amplitude were derived from waveform of skin potential, each latency and amplitude were compared to stimulus intensity. The waveform of skin potential were recorded stably, and the threshold of skin potential appeared nearly the hearing threshold level of the participant. The latency was decreased and the amplitude was increased according to the increase of the stimulus intensity. These results suggest that auditory evoked skin potential can be applicable to auditory assessment and audiological diagnosis tool.

  • PDF

Audio-visual Spatial Coherence Judgments in the Peripheral Visual Fields

  • Lee, Chai-Bong;Kang, Dae-Gee
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.16 no.2
    • /
    • pp.35-39
    • /
    • 2015
  • Auditory and visual stimuli presented in the peripheral visual field were perceived as spatially coincident when the auditory stimulus was presented five to seven degrees outwards from the direction of the visual stimulus. Furthermore, judgments of the perceived distance between auditory and visual stimuli presented in the periphery did not increase when an auditory stimulus was presented in the peripheral side of the visual stimulus. As to the origin of this phenomenon, there would seem to be two possibilities. One is that the participants could not perceptually distinguish the distance on the peripheral side because of the limitation of accuracy perception. The other is that the participants could distinguish the distances, but could not evaluate them because of the insufficient experimental setup of auditory stimuli. In order to confirm which of these two alternative explanations is valid, we conducted an experiment similar to that of our previous study using a sufficient number of loudspeakers for the presentation of auditory stimuli. Results revealed that judgments of perceived distance increased on the peripheral side. This indicates that we can perceive discrimination between audio and visual stimuli on the peripheral side.

A Gap Prepulse with a Principal Stimulus Yields a Combined Auditory Late Response

  • Lee, Jae-Hun;Jung, Jae Yun;Park, Ilyong
    • Journal of Audiology & Otology
    • /
    • v.24 no.3
    • /
    • pp.149-156
    • /
    • 2020
  • Background and Objectives: The gap prepulse inhibition of the acoustic startle response has been used to screen tinnitus in an animal model. Here, we examined changes in the auditory late response under various conditions of gap prepulse inhibition. Subjects and Methods: We recruited 19 healthy adults (5 males, 14 females) and their auditory late responses were recorded after various stimuli with or without gap prepulsing. The N1 and P2 responses were selected for analysis. The gap prepulse inhibition was estimated to determine the optimal auditory late response in the gap prepulse paradigm. Results: We found that the gap per se generated a response that was very similar to the response elicited by sound stimuli. This critically affected the gap associated with the maximal inhibition of the stimulus response. Among the various gap-stimulus intervals (GSIs) between the gap and principal stimulus, the GSI of 150 ms maximally inhibited the response. However, after zero padding was used to minimize artifacts after a P2 response to a gap stimulus, the differences among the GSIs disappeared. Conclusions: Overall, the data suggest that both the prepulse inhibition and the gap per se should be considered when using the gap prepulse paradigm to assess tinnitus in humans.

A Gap Prepulse with a Principal Stimulus Yields a Combined Auditory Late Response

  • Lee, Jae-Hun;Jung, Jae Yun;Park, Ilyong
    • Korean Journal of Audiology
    • /
    • v.24 no.3
    • /
    • pp.149-156
    • /
    • 2020
  • Background and Objectives: The gap prepulse inhibition of the acoustic startle response has been used to screen tinnitus in an animal model. Here, we examined changes in the auditory late response under various conditions of gap prepulse inhibition. Subjects and Methods: We recruited 19 healthy adults (5 males, 14 females) and their auditory late responses were recorded after various stimuli with or without gap prepulsing. The N1 and P2 responses were selected for analysis. The gap prepulse inhibition was estimated to determine the optimal auditory late response in the gap prepulse paradigm. Results: We found that the gap per se generated a response that was very similar to the response elicited by sound stimuli. This critically affected the gap associated with the maximal inhibition of the stimulus response. Among the various gap-stimulus intervals (GSIs) between the gap and principal stimulus, the GSI of 150 ms maximally inhibited the response. However, after zero padding was used to minimize artifacts after a P2 response to a gap stimulus, the differences among the GSIs disappeared. Conclusions: Overall, the data suggest that both the prepulse inhibition and the gap per se should be considered when using the gap prepulse paradigm to assess tinnitus in humans.

Ergonomic Recommendation for Optimum Positions and Warning Foreperiod of Auditory Signals in Human-Machine Interface

  • Lee, Fion C.H.;Chan, Alan H.S.
    • Industrial Engineering and Management Systems
    • /
    • v.6 no.1
    • /
    • pp.40-48
    • /
    • 2007
  • This study investigated the optimum positions and warning foreperiod for auditory signals with an experiment on spatial stimulus-response (S-R) compatibility effects. The auditory signals were presented at the front-right, front-left, rear-right, and rear-left positions from the subjects, whose reaction times and accuracies at different spatial mapping conditions were examined. The results showed a significant spatial stimulus-response compatibility effect in which faster and more accurate responses were obtained in the transversely and longitudinally compatible condition while the worst performance was found when spatial stimulus-response compatibility did not exist in either orientation. It was also shown that the transverse compatibility effect was found significantly stronger than the longitudinal compatibility effect. The effect of signal position was found significant and post hoc test suggested that the emergent warning alarm should be placed on the front-right position for right-handed users. The warning foreperiod prior to the signal presentation was shown to influence reaction time and a warning foreperiod of 3 s is found optimal for the 2-choice auditory reaction task.

A Study on the Difference of Responses to the Visual or Auditory Stimulus in Sasang Constitution Groups (사상인(四象人)의 시각(視覺) 및 청각(聽覺) 자극에 대한 반응 차이 연구)

  • Shin, Dong-Yoon;Kim, Young-Won;Song, Jeong-Mo;Yoo, Kyung;Park, Hyeon-Chol;Kim, Lak-Hyeong
    • Journal of Sasang Constitutional Medicine
    • /
    • v.17 no.3
    • /
    • pp.76-81
    • /
    • 2005
  • 1. Objectives The purpose of this study is to find the difference of response to visual or auditory stimulus in Sasang Constitutional groups. 2. Methods Continuous performance test (CPT)-ADS program- was measured in 44 females in 20's. The mean and standard deviation of response time were measured and analysed statically in each group of Sasang Constitution. 3. Results There were significant results in the average of response time. The average of the response time to the auditory stimulus in Soyangin was shorter then that of in Soeumin 4. Conclusions The results suggest that there could be differences in the pattern of response to circumstantial stimulus in Sasang Constitution.

  • PDF