• Title/Summary/Keyword: Automated Vehicle

Search Result 459, Processing Time 0.025 seconds

Development and Validation of Safety Performance Evaluation Scenarios of Autonomous Vehicle (자율주행 안전성 평가 시나리오 개발 및 검증)

  • Chae, Heungseok;Jeong, Yonghwan;Lee, Myungsu;Shin, Jaekon;Yi, Kyongsu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.9 no.1
    • /
    • pp.6-12
    • /
    • 2017
  • Regulation for the testing and operation of automated vehicles on public roadways has been recently developed all over the world. For example, the licensing standards and the evaluation technology for automated vehicles have been proposed in California, Nevada and EU. But specific safety evaluation scenarios for automated vehicles have not been proposed yet. This paper presents safety evaluation scenarios for extraordinary service permission of automated vehicles on highways. A total of seven scenarios are selected in consideration of safety priority and real traffic situation. Six scenarios are relevant with lane keeping and one scenario is relevant with lane change. All scenarios are developed based on existing ADAS evaluation scenarios and repeated simulation of automated vehicle algorithm. Safety evaluation factors as well as scenarios are developed. The safety factors are based on existing ADAS ISO requirements, ADAS safety factors and current traffic regulations. For the scenarios, a hunter vehicle is needed in addition to automated vehicle evaluated. The hunter vehicle performs multiple roles like preceding vehicle, cut-in vehicle and so on. The hunter vehicle is also automated vehicle equipped with high performance GPS, radar and Lidar. All the scenarios can be implemented by driving a lap on a KATRI ITS test track. These scenarios and safety evaluation factors are investigated via both a computer simulation and an experimental vehicle test on the test track. The experimental vehicle test was conducted with two automated vehicles, which are the evaluated vehicle and the hunter vehicle.

Implementation of Automated Vehicle Electrical and Electronic System based-on Cyber-physical System

  • Song, Younghun;Park, Jeehun;Lee, Kyung-Chang
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.22 no.1
    • /
    • pp.21-28
    • /
    • 2019
  • As the automated vehicle system evolves, electronic devices and control software installed in vehicles are increasing. Therefore, automated vehicle electrical and electronic system (E/E system) design for ensure system integration, software modularization, system reusability, and scalability at the design stage of the automated vehicle is actively studied. This paper introduces a design methodology for automated vehicle E/E systems that employs by using cyber-physical systems (CPS). An automated forklift system was designed to examine the effectiveness of the proposed methodology. This paper showed that the proposed CPS design methodology enables an effective development of automated E/E control systems. Compare to existing design methodologies, it provides higher reusability of individual modules and an easier way to integrate control system elements such as controllers, sensors, and actuators.

Intersection Collision Situation Simulation of Automated Vehicle Considering Sensor Range (센서 범위를 고려한 자율주행자동차 교차로 충돌 상황 시뮬레이션)

  • Lee, Jangu;Lee, Myungsu;Jeong, Jayil
    • Journal of Auto-vehicle Safety Association
    • /
    • v.13 no.4
    • /
    • pp.114-122
    • /
    • 2021
  • In this paper, an automated vehicle intersection collision accident was analyzed through simulation. Recently, the more automated vehicles are distributed, the more accidents related to automated vehicles occur. Accidents may show different trends depending on the sensor characteristics of the automated vehicle and the performance of the accident prevention system. Based on NASS-CDS (National Automotive Sampling System-Crashworthiness Data System) and TAAS (Traffic Accident Analysis System), four scenarios are derived and simulations are performed. Automated vehicles are applied with a virtual system consisting of an autonomous emergency braking system and algorithms that predict the route and avoid collisions. The simulations are conducted by changing the sensor angle, vehicle speed, the range of the sensor and vehicle speed range. A range of variables considered vehicle collision were derived from the simulation.

Multi-Vehicle Environment Simulation Tool to Develop and Evaluate Automated Driving Systems in Motorway (고속도로에서의 자율주행 알고리즘 개발 및 평가를 위한 다차량 시뮬레이션 환경 개발)

  • Lee, Hojoon;Jeong, Yonghwan;Min, Kyongchan;Lee, Myungsu;Shin, Jae Kon;Yi, Kyongsu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.8 no.4
    • /
    • pp.31-37
    • /
    • 2016
  • Since real road experiments have many restrictions, a multi-vehicle traffic simulator can be an effective tool to develop and evaluate fully automated driving systems. This paper presents multi-vehicle environment simulation tool to develop and evaluate motorway automated driving systems. The proposed simulation tool consists of following two main parts: surrounding vehicle model and environment sensor model. The surrounding vehicle model is designed to quickly generate rational complex traffic situations of motorway. The environment sensor model depicts uncertainty of environment sensor. As a result, various traffic situations with uncertainty of environment sensor can be proposed by the multi-vehicle environment simulation tool. An application to automated driving system has been conducted. A lane changing algorithm is evaluated by performance indexes from the multi-vehicle environment simulation tool.

A Study on the Direction of Data Triggers and Elements for Automated Vehicle Data Recorder (자율주행자동차 데이터 기록장치의 기록 조건 및 항목에 대한 방향성 연구)

  • Heejin Kang;Naeun Woo;Giok Park;Jihyun Song
    • Journal of Auto-vehicle Safety Association
    • /
    • v.15 no.4
    • /
    • pp.71-78
    • /
    • 2023
  • This study presents the direction of data triggers and elements to be recorded in automated vehicles in the future in relation to the event data recorder (EDR) and data storage system for automated driving (DSSAD). It does not distinguish between the EDR and DSSAD, but suggests data triggers and elements in preparation for overall automated vehicle accidents and dangerous situations. To propose, the current status of discussions on EDR/DSSAD internationally and the case of investigating accidents with automated vehicles under temporary driving licenses in Korea were analyzed. Based on the analysis, the direction of data triggers and elements of the EDR/DSSAD of automated vehicles were presented.

Lane Change Behavior of Manual Vehicles in Automated Vehicle Platooning Environments (군집주행 환경에서 비자율차의 차로변경행태 분석)

  • LEE, Seol Young;OH, Cheol
    • Journal of Korean Society of Transportation
    • /
    • v.35 no.4
    • /
    • pp.332-347
    • /
    • 2017
  • Analysis of the interaction between the automated vehicles and manual vehicles is very important in analyzing the performance of automated cooperative driving environments. In particular, the automated vehicle platooning can affect the driving behavior of adjacent manual vehicles. The purpose of this study is to analyze the lane change behavior of the manual vehicles in automated vehicle platonning environment and to conduct the experiment and questionnaire surveys in three stages. In the first stage, a video questionnaire survey was conducted, and responsive behaviors of manual vehicles were investigated. In second stage, the driving simulator experiments were conducted to investigate the lane change behaviors of in automated vehicle platonning environments. To analyze the lane change behavior of the manual vehicles, lane change durations and acceleration noise, which are indicators of traffic flow stability, were used. The driving behavior of manual vehicles were compared across different market penetration rates (MPR) of automated vehicles and human factors. Lastly, NASA-TLX (NASA Task Load Index) was used to evaluate the workload of the manual vehicle drivers. As a result of the analysis, it was identified that manual vehicle drivers had psychological burdens while driving in automated vehicle platonning environments. Lane change durations were longer when the MPR of the automated vehicles increased, and acceleration noise were increased in the case of 30-40 years old or female drivers. The results from this study can be used as a fundamental for more realistic traffic simulations reflecting the interaction between the automated vehicles and manual vehicles. It is also expected to effectively support the establishment of valuable transportation management strategy in automated vehicle environments.

Hybrid control of a tricycle wheeled AGV for path following using advanced fuzzy-PID

  • Bui, Thanh-Luan;Doan, Phuc-Thinh;Van, Duong-Tu;Kim, Hak-Kyeong;Kim, Sang-Bong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.10
    • /
    • pp.1287-1296
    • /
    • 2014
  • This paper is about control of Automated Guided Vehicle for path following using fuzzy logic controller. The Automated Guided Vehicle is a tricycle wheeled mobile robot with three wheels, two fixed passive wheels and one steering driving wheel. First, kinematic and dynamic modeling for Automated Guided Vehicle is presented. Second, a controller that integrates two control loops, kinematic control loop and dynamic control loop, is designed for Automated Guided Vehicle to follow an unknown path. The kinematic control loop based on Fuzzy logic framework and the dynamic control loop based on two PID controllers are proposed. Simulation and experimental results are presented to show the effectiveness of the proposed controllers.

The Test of Gantry Travel Mechanism of ALV(Automated Lifting Vehicle) (자가하역차량(ALV:Automated Lifting Vehicle)의 주행구동장치 시험)

  • Kim, U-Seon;Kim, Seung-Nam;Jeong, Han-Uk;Go, Il-Gon
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.317-323
    • /
    • 2006
  • The objective of this study is to test and modify the gantry travel mechanism of an ALV(automated lifting vehicle) as a main technology of development of ALV. For the purpose of the improvement of container terminal productivity, this study performed to develop the ALV as a part of R&D. In order to verify the design data and detect the errors of detailed drawings, we performed the various limited weight test under load and unload conditions. Through the reflect of final drawing based on the this test, we could use to produce the more complete vehicle.

  • PDF

Remote Emergency Stop System to Improve Safety of Automated Driving Vehicle (자동주행차량의 안전성 향상을 위한 원격비상정지시스템)

  • Ryoo, Young-Jae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.3
    • /
    • pp.194-198
    • /
    • 2015
  • In this paper, a remote emergency stop system to improve the safety of an automated driving vehicle is proposed. One of the most serious problems of the previous wireless remote emergency system is that it does not work when the wireless channel is damaged in case of an emergency because it is composed of a single communication channel. Therefore, the proposed remote emergency stop system composed of a portable wireless remote system and a stationary wireless remote system is designed and the remote emergency stop system for automated driving vehicles is developed. By applying it to an automated driving vehicle to check it's performance, the wireless remote system is tested. Emergency stops using the portable wireless remote system is tested when the stationary wireless remote system is disconnected. Also, emergency stops using the stationary wireless remote system are tested when the portable wireless remote system is disconnected. The results of the emergency stop test show a satisfactory performance.

A Study on Functions and Characteristics of Level 4 Autonomous Vehicles (레벨 4 자율주행자동차의 기능과 특성 연구)

  • Lee, Gwang Goo;Yong, Boojoong;Woo, Hyungu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.12 no.4
    • /
    • pp.61-69
    • /
    • 2020
  • As a sales volume of autonomous vehicle continually grows up, regulations on this new technology are being introduced around the world. For example, safety standards for the Level 3 automated driving system was promulgated in December 2019 by the Ministry of Land, Infrastructure and Transport of Korean government. In order to promote the development of autonomous vehicle technology and ensure its safety simultaneously, the regulations on the automated driving systems should be phased in to keep pace with technology progress and market expansion. However, according to SAE J3016, which is well known to classify the level of the autonomous vehicle technologies, the description for classification is rather abstract. Therefore it is necessary to describe the automated driving system in more detail in terms of the 'Level.' In this study, the functions and characteristics of automated driving system are carefully classified at each level based on the commentary in the Informal Working Group (IWG) of the UN WP29. In particular, regarding the Level 4, technical issues are characterized with respect to vehicle tasks, driver tasks, system performance and regulations. The important features of the autonomous vehicles to meet Level 4 are explored on the viewpoints of driver replacement, emergency response and connected driving performance.