• Title/Summary/Keyword: Ballistic Coefficient

Search Result 19, Processing Time 0.031 seconds

Comparison of Ballistic-Coefficient-Based Estimation Algorithms for Precise Tracking of a Re-Entry Vehicle and its Impact Point Prediction

  • Moon, Kyung Rok;Kim, Tae Han;Song, Taek Lyul
    • Journal of Astronomy and Space Sciences
    • /
    • v.29 no.4
    • /
    • pp.363-374
    • /
    • 2012
  • This paper studies the problem of tracking a re-entry vehicle (RV) in order to predict its impact point on the ground. Re-entry target dynamics combined with super-high speed has a complex non-linearity due to ballistic coefficient variations. However, it is difficult to construct a database for the ballistic coefficient of a unknown vehicle for a wide range of variations, thus the reliability of target tracking performance cannot be guaranteed if accurate ballistic coefficient estimation is not achieved. Various techniques for ballistic coefficient estimation have been previously proposed, but limitations exist for the estimation of non-linear parts accurately without obtaining prior information. In this paper we propose the ballistic coefficient ${\beta}$ model-based interacting multiple model-extended Kalman filter (${\beta}$-IMM-EKF) for precise tracking of an RV. To evaluate the performance, other ballistic coefficient model based filters, which are gamma augmented filter, gamma bootstrapped filter were compared and assessed with the proposed ${\beta}$-IMM-EKF for precise tracking of an RV.

Ballistic Cavity Simulation using Modified Bresenham Algorithm (개선된 브레즈넘 알고리즘을 이용한 탄흔 시뮬레이션)

  • Yunji Seok;Seongah Chin
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.3
    • /
    • pp.683-688
    • /
    • 2023
  • Content featuring next-generation weapons is continuously appearing in games and virtual reality. In the context of story development, the traces of a target's bullet marks are observed differently according to the unique characteristics of the rifle and bullet. Additionally, there is an example of using forensic ballistics to investigate crime by examining the traces of bullets. Understanding the relationship between the ballistic coefficient and cavity by ballistics is crucial during this process. This paper proposes a physics-based cavity simulation using the modified Bresenham's line algorithm, which can enhance realism in games and virtual reality. This simulation accurately models the trajectory of bullets and cavity formation upon impact, creating a more realistic representation of how bullets interact with materials. Overall, physics-based simulations can greatly enhance the realism and immersion of games and virtual reality experiences and can have applications in forensic investigations.

Extraction of Ballistic Parameters in 65 nm MOSFETs

  • Kim, Jun-Soo;Lee, Jae-Hong;Kwon, Yong-Min;Park, Byung-Gook;Lee, Jong-Duk;Shin, Hyung-Cheol
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.9 no.1
    • /
    • pp.55-60
    • /
    • 2009
  • The channel backscattering coefficient and injection velocity have been extracted experimentally in 65nm MOSFETs. Thanks to an experimental extraction methodology taking into account multi-subband population, we demonstrate that the short channel ballistic efficiency is slightly greater than long channel ballistic efficiency.

An Analysis Study about Relationship between Ballistic Coefficient and Accuracy of Predicted Intercept Point of Super-High Speed Targets (초고속 표적의 탄도계수와 예상요격지점 정확도의 상관관계 분석 연구)

  • Lee, Dong-Gwan;Cho, Kil-Seok;Shin, Jin-Hwa;Kim, Ji-Eun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.2
    • /
    • pp.265-274
    • /
    • 2014
  • A recent air defense missile system(ADMS) is required to have a capability to intercept super-high speed targets such as tactical ballistic missiles(TBMs) by performing engagement control efficiently. The air defense missile system should be ready to engage the TBMs as soon as the ADMS detects TBMs because falling velocity of TBM is very high and remaining time interval to engage TBM is very short. As a result, the ADMS has to predict the trajectories of TBMs accurately with estimated states of dynamics to generate predicted intercept point(PIP). In addition, it is needed to engage TBMs accurately via transmitting the obtained PIP data to the corresponding intercept missiles. In this paper, an analysis about the relationship between ballistic coefficient and PIP accuracy which is depending on geodetic height of the first detection of TBM is included and an issue about effective engagement control for the TBM is considered.

Blast Coefficient for Bench Blasting (벤치발파 설계에서 발파계수 설정에 관한 연구)

  • Kim, Hee-Do;Kim, Jung-Kyu;Ko, Young-Hun;Noh, You-Song;Shin, Myeong-Jin;Yang, Hyung-Sik
    • Explosives and Blasting
    • /
    • v.33 no.1
    • /
    • pp.1-12
    • /
    • 2015
  • In this study, the domestic bench blasting sites were researched to set the blast coefficient C according to the type of rock and type of industry. With the use of the experimental data on the representative industrial explosives and the data of the manufacturers'data on explosives, powder coefficient e was set up. The blast coefficient C was 0.21~0.30 when the average value for 5 representative kinds of rocks including granite was searched. The blast coefficient C for quarrying, mining and construction sites were 0.22, 0.13 and 0.26 respectively. On the other hand, powder coefficient e was obtained in four elements such as reactive energy, ballistic mortar test, VOD, Langefors'strength per unit weight. e value for emulsion which is one of the representative explosives was found to be 1 while those of high performance emulsion and ANFO were found to be 0.9 and 1, respectively.

Analysis of Internal Ballistic Characteristics of Solid Rocket with Erosive Burning (침식연소에 따른 고체 로켓 내탄도 특성 변화 분석)

  • Cho, Mingyoung;Kim, Jinyong;Park, Sunghan
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.18 no.3
    • /
    • pp.56-61
    • /
    • 2014
  • Two erosive burning models were applied to compare analysis results of ballistic for the internal ballistics of solid rocket motors. By comparing motor tests with results of analysis, the variance of a grain shape was analyzed and coefficients of erosive burning were drawn. Results of comparison presents that the coefficient of erosive burning was proportional to the change of burning area, while inversely proportional to the change of cross area.

A new method to estimate the striking velocity for small caliber projectiles (소구경 탄자의 충돌속도 추정방법 제안)

  • Yoo, Sangjun;Kim, Jeyong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.3
    • /
    • pp.1288-1293
    • /
    • 2014
  • This paper proposes a new method to estimate the striking velocity for ballistic limit velocity in MIL-STD-662F. The method from MIL-STD-662F needs relative air density, drag coefficient, form factor, ballistic coefficient for estimating striking velocity. So precedent studies are essential. However, the new method can estimate striking velocity only using measured velocities and distance between the screen and the target. To prove new method, we compared estimation of striking velocity from both the new method and the method from MIL-STD-662F on the basis of datain PRODAS. The new method shows bigger errors in some velocity ranges. But it could still calculate ballistic limit velocity. It also shows smaller errors in most velocity ranges.

Numerical Simulation of High-Velocity Oblique Impact of Mild Steel Spheres Against Mild Steel Plates (연강 판재에 대한 연강 구의 고속경사충돌 수치해석)

  • Yu, Yo-Han;Jang, Sun-Nam;Jeong, Dong-Taek
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.3
    • /
    • pp.576-585
    • /
    • 2002
  • A three-dimensional Lagrangian explicit time-integration finite element code for analyzing the dynamic impact phenomena was developed. It uses four node tetrahedral elements. In order to consider the effects of strain rate hardening, strain hardening and thermal softening, which are frequently observed in high-velocity deformation phenomena, Johnson-Cook model is used as constitutive model. For more accurate and robust contact force computation, the defense node contact algorithm was adopted and implemented. In order to evaluate the performance of the newly developed three-dimensional hydrocode NET3D, numerical simulations of the oblique impact of mild steel plate by mild steel sphere were carried out. Ballistic limit about various oblique angle between 0 degree and 80 degree was estimated through a series of simulations with different initial velocities of sphere. Element eroding by equivalent plastic strain was applied to mild steel spheres and targets. Ballistic limits and fracture characteristics obtained from simulation were compared with experimental results conducted by Finnegan et al. From numerical studies, the following conclusions were reached. (1) Simulations could successfully reproduce the key features observed in experiment such as tensile failure termed "disking"at normal impacts and outwards bending of partially formed plus segments termed "hinge-mode"at oblique impacts. (2) Simulation results fur 60 degrees oblique impact at 0.70 km/s and 0.91 km/s were compared with experimental results and Eulerian hydrocode CTH simulation results. The Lagrangian code NET3D is superior to Eulerian code CTH in the computational accuracy. Agreement with the experimentally obtained final deformed cross-sections of the projectile is excellent. (3) Agreement with the experimental ballistic limit data, particularly at the high-obliquity impacts, is reasonably good. (4) The simulation result is not very sensitive to eroding condition but slightly influenced by friction coefficient.

Integrated Algorithm for Identification of Long Range Artillery Type and Impact Point Prediction With IMM Filter (IMM 필터를 이용한 장사정포의 탄종 분리 및 탄착점 예측 통합 알고리즘)

  • Jung, Cheol-Goo;Lee, Chang-Hun;Tahk, Min-Jea;Yoo, Dong-Gil;Sohn, Sung-Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.8
    • /
    • pp.531-540
    • /
    • 2022
  • In this paper, we present an algorithm that identifies artillery type and rapidly predicts the impact point based on the IMM filter. The ballistic trajectory equation is used as a system model, and three models with different ballistic coefficient values are used. Acceleration was divided into three components of gravity, air resistance, and lift. And lift acceleration was added as a new state variable. The kinematic condition that the velocity vector and lift acceleration are perpendicular was used as a pseudo-measurement value. The impact point was predicted based on the state variable estimated through the IMM filter and the ballistic coefficient of the model with the highest mode probability. Instead of the commonly used Runge-Kutta numerical integration for impact point prediction, a semi-analytic method was used to predict impact point with a small amount of calculation. Finally, a state variable initialization method using the least-square method was proposed. An integrated algorithm including artillery type identification, impact point prediction and initialization was presented, and the validity of the proposed method was verified through simulation.

Model-Driven Design Framework for Future Combat Vehicle Development based on Firepower and Mobility: (1) Integrated Performance Modeling (화력과 기동의 통합성능을 고려한 미래 전투차량의 해석 기반 설계 프레임웍 연구: (1) 통합성능분석 모델개발)

  • Lim, Sunghoon;Lim, Woochul;Min, Seungjae;Lee, Tae Hee;Ryoo, Jae Bong;Pyun, Jai-Jeong
    • Korean Journal of Computational Design and Engineering
    • /
    • v.19 no.4
    • /
    • pp.316-323
    • /
    • 2014
  • This paper proposes the 3D modeling and simulation technique for predicting the integrated performance of combat vehicle. To consider the practical driving and firing condition of a combat vehicle, the full vehicle model, which can define the six degrees-of-freedom of vehicle motion and various firing angles, is developed. The critical design parameters such as the stiffness and damping coefficient of suspension system are applied to construct the analysis model of vehicle. A simple ballistic model, which incorporates the empirical interior ballistic model and the point mass trajectory model, is built to estimate the firing range and the firing recoil force. To predict the integrated performance and analyze the effect of system parameters, MATLAB/SIM-ULINK model of a combat vehicle for performing the real time simulation is also developed. Several simulation tests incorporating the road bump and the firing recoil force are presented to confirm the effectiveness of the proposed vehicle model.