• Title/Summary/Keyword: Beauvericin

Search Result 9, Processing Time 0.022 seconds

Survey of Beauvericin Contamination in Korean Grains by HPLC and the Production of Beauvericin and Enniatin Derivatives by Fusarium oxysporum KFCC 11363P (한국산 곡류의 Becuvericin의 오염도 조사 및 Becuvericin과 Enniatin 유도체 생성조건)

  • Song, Hyuk_hwan;Lee, Hee-Seok;Lee, Chan
    • Journal of Food Hygiene and Safety
    • /
    • v.23 no.1
    • /
    • pp.73-79
    • /
    • 2008
  • The productions of beauvericin and enniatins H, I, and MK1688 by Fusarium oxysporum KFCC 11363P were investigated on rice substrate at four temperatures (15, 20, 25, and $30^{\circ}C$) and three moisture contents (10, 20, and 40%). The largest amount of beauvericin ($718.0\;{\mu}g/g$) was produced at $25^{\circ}C$, and maximum levels of enniatin H ($781.9\;{\mu}g/g$), I ($725.8\;{\mu}g/g$), and MK1688 ($425.8\;{\mu}g/g$) were measured by high pressure liquid chromatography (HPLC) at the same temperature. The optimal moisture content for the production of beauvericin and enniatins H, I, and MK1688 was 40%, and the trace amounts of these toxins were observed at 10% moisture content. Sixty five grain samples (n=65) were tested for the monitoring of beauvericin. This mycotoxin was detected in six grain samples including three maize, two barley, and one wheat samples. The highest contamination level of beauvericin was observed in maize sample ($0.23\;{\mu}g/g$).

Evolutionary Explanation for Beauveria bassiana Being a Potent Biological Control Agent Against Agricultural Pests

  • Han, Jae-Gu
    • 한국균학회소식:학술대회논문집
    • /
    • 2014.05a
    • /
    • pp.27-28
    • /
    • 2014
  • Beauveria bassiana (Cordycipitaceae, Hypocreales, Ascomycota) is an anamorphic fungus having a potential to be used as a biological control agent because it parasitizes a wide range of arthropod hosts including termites, aphids, beetles and many other insects. A number of bioactive secondary metabolites (SMs) have been isolated from B. bassiana and functionally verified. Among them, beauvericin and bassianolide are cyclic depsipeptides with antibiotic and insecticidal effects belonging to the enniatin family. Non-ribosomal peptide synthetases (NRPSs) play a crucial role in the synthesis of these secondary metabolites. NRPSs are modularly organized multienzyme complexes in which each module is responsible for the elongation of proteinogenic and non-protein amino acids, as well as carboxyl and hydroxyacids. A minimum of three domains are necessary for one NRPS elongation module: an adenylation (A) domain for substrate recognition and activation; a tholation (T) domain that tethers the growing peptide chain and the incoming aminoacyl unit; and a condensation (C) domain to catalyze peptide bond formation. Some of the optional domains include epimerization (E), heterocyclization (Cy) and oxidation (Ox) domains, which may modify the enzyme-bound precursors or intermediates. In the present study, we analyzed genomes of B. bassiana and its allied species in Hypocreales to verify the distribution of NRPS-encoding genes involving biosynthesis of beauvericin and bassianolide, and to unveil the evolutionary processes of the gene clusters. Initially, we retrieved completely or partially assembled genomic sequences of fungal species belonging to Hypocreales from public databases. SM biosynthesizing genes were predicted from the selected genomes using antiSMASH program. Adenylation (A) domains were extracted from the predicted NRPS, NRPS-like and NRPS-PKS hybrid genes, and used them to construct a phylogenetic tree. Based on the preliminary results of SM biosynthetic gene prediction in B. bassiana, we analyzed the conserved gene orders of beauvericin and bassianolide biosynthetic gene clusters among the hypocrealean fungi. Reciprocal best blast hit (RBH) approach was performed to identify the regions orthologous to the biosynthetic gene cluster in the selected fungal genomes. A clear recombination pattern was recognized in the inferred A-domain tree in which A-domains in the 1st and 2nd modules of beauvericin and bassianolide synthetases were grouped in CYCLO and EAS clades, respectively, suggesting that two modules of each synthetase have evolved independently. In addition, inferred topologies were congruent with the species phylogeny of Cordycipitaceae, indicating that the gene fusion event have occurred before the species divergence. Beauvericin and bassianolide synthetases turned out to possess identical domain organization as C-A-T-C-A-NM-T-T-C. We also predicted precursors of beauvericin and bassianolide synthetases based on the extracted signature residues in A-domain core motifs. The result showed that the A-domains in the 1st module of both synthetases select D-2-hydroxyisovalerate (D-Hiv), while A-domains in the 2nd modules specifically activate L-phenylalanine (Phe) in beauvericin synthetase and leucine (Leu) in bassianolide synthetase. antiSMASH ver. 2.0 predicted 15 genes in the beauvericin biosynthetic gene cluster of the B. bassiana genome dispersed across a total length of approximately 50kb. The beauvericin biosynthetic gene cluster contains beauvericin synthetase as well as kivr gene encoding NADPH-dependent ketoisovalerate reductase which is necessary to convert 2-ketoisovalarate to D-Hiv and a gene encoding a putative Gal4-like transcriptional regulator. Our syntenic comparison showed that species in Cordycipitaceae have almost conserved beauvericin biosynthetic gene cluster although the gene order and direction were sometimes variable. It is intriguing that there is no region orthologous to beauvericin synthetase gene in Cordyceps militaris genome. It is likely that beauvericin synthetase was present in common ancestor of Cordycipitaceae but selective gene loss has occurred in several species including C. militaris. Putative bassianolide biosynthetic gene cluster consisted of 16 genes including bassianolide synthetase, cytochrome P450 monooxygenase, and putative Gal4-like transcriptional regulator genes. Our synteny analysis found that only B. bassiana possessed a bassianolide synthetase gene among the studied fungi. This result is consistent with the groupings in A-domain tree in which bassianolide synthetase gene found in B. bassiana was not grouped with NRPS genes predicted in other species. We hypothesized that bassianolide biosynthesizing cluster genes in B. bassiana are possibly acquired by horizontal gene transfer (HGT) from distantly related fungi. The present study showed that B. bassiana is the only species capable of producing both beauvericin and bassianolide. This property led to B. bassiana infect multiple hosts and to be a potential biological control agent against agricultural pests.

  • PDF

Analysis of Beauvericin and Unusual Enniatins Co-Produced by Fusarium oxysporum FB1501 (KFCC 11363P)

  • Song Hyuk-Hwan;Ahn Joong-Hoon;Lim Yoong-Ho;Lee Chan
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.7
    • /
    • pp.1111-1119
    • /
    • 2006
  • Beauvericins and enniatins are cyclohexadepsipeptides exhibiting various biological activities on animal systems, including humans. Fusarium oxysporum FB1501 (KFCC 11363P) that produces four different cyclohexadepsipeptides was isolated from soil in Korea and the structures of the four cyclohexadepsipeptides elucidated by HPLC, MS, IR, and NMR analyses. The molecular weights for compounds 1,2,3, and 4 were determined to be 654.5, 784.5, 668.6, and 682.5, respectively, on the basis of ESI-MS measurements. The IR spectra for all the compounds exhibited absorptions for ester $(1,733-1,743\;cm^{-1})$ and amide $(1,649-1,655\;cm^{-1})$ bonds that were very similar to those for beauvericin and enniatins with ester and amide absorptions. The results of the NMR analysis $(^{1}H,\;^{13}C,\;135-DEPT,\;COSY,\;HMQC,\;and\;HMBC;\;in\;COCl_{3})$ revealed that compounds 1,3, and 4 consisted of $_{L}-N-methyl\;valine$ (N-MeVal), $_{D}-{\alpha}-hydroxyisovaleic\;acid$ (Hiv), and 2-hydroxy-3-methylpentanoic acid (Hmp) residues (compound 1: three N-MeVal residues, two Hiv residues, and one Hmp residue; compound 3: three N-MeVal residues, one Hiv, and two Hmp residues; compound 4: three N-MeVal residues and three Hmp residues). Therefore, the compounds were identified as enniatin H (compound 1), enniatin I (compound 3), and enniatin MK1688 (compound 4). Compound 2 was analyzed as beauvericin according to 1D and 2D NMR analyses. This study is the first report related to the co-production of beauvericin with other unusual enniatins, such as enniatin H, enniatin I, and enniatin MK1688, by Fusarium oxysporum.

Beauvericin, a cyclic peptide, inhibits inflammatory responses in macrophages by inhibiting the NF-κB pathway

  • Yoo, Sulgi;Kim, Mi-Yeon;Cho, Jae Youl
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.21 no.4
    • /
    • pp.449-456
    • /
    • 2017
  • Beauvericin (BEA), a cyclic hexadepsipeptide produced by the fungus Beauveria bassiana, is known to have anti-cancer, anti-inflammatory, and anti-microbial actions. However, how BEA suppresses macrophage-induced inflammatory responses has not been fully elucidated. In this study, we explored the anti-inflammatory properties of BEA and the underlying molecular mechanisms using lipopolysaccharide (LPS)-treated macrophage-like RAW264.7 cells. Levels of nitric oxide (NO), mRNA levels of transcription factors and the inflammatory genes inducible NO synthase (iNOS) and interleukin (IL)-1, and protein levels of activated intracellular signaling molecules were determined by Griess assay, semi-quantitative reverse transcriptase-polymerase chain reaction (RT-PCR), luciferase reporter gene assay, and immunoblotting analysis. BEA dose-dependently blocked the production of NO in LPS-treated RAW264.7 cells without inducing cell cytotoxicity. BEA also prevented LPS-triggered morphological changes. This compound significantly inhibited nuclear translocation of the $NF-{\kappa}B$ subunits p65 and p50. Luciferase reporter gene assays demonstrated that BEA suppresses MyD88-dependent NF-${\kappa}B$ activation. By analyzing upstream signaling events for $NF-{\kappa}B$ activation and overexpressing Src and Syk, these two enzymes were revealed to be targets of BEA. Together, these results suggest that BEA suppresses $NF-{\kappa}B$-dependent inflammatory responses by suppressing both Src and Syk.

Statistical Optimization of Growth Medium for the Production of the Entomopathogenic and Phytotoxic Cyclic Depsipeptide Beauvericin from Fusarium oxysporum KFCC 11363P

  • Lee, Hee-Seok;Song, Hyuk-Hwan;Ahn, Joong-Hoon;Shin, Cha-Gyun;Lee, Gung-Pyo;Lee, Chan
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.1
    • /
    • pp.138-144
    • /
    • 2008
  • The production of the entomopathogenic and phytotoxic cyclic depsipeptide beauvericin (BEA) was studied in submerged cultures of Fusarium oxysporum KFCC 11363P isolated in Korea. The influences of various factors on mycelia growth and BEA production were examined in both complete and chemically defined culture media. The mycelia growth and BEA production were highest in Fusarium defined medium. The optimal carbon and nitrogen sources for maximizing BEA production were glucose and $NaNO_3$, respectively. The carbon/nitrogen ratio for maximal production of BEA was investigated using response surface methodology (RSM). Equations derived by differentiation of the RSM model revealed that the production of BEA was maximal when using 108 mM glucose and 25 mM $NaNO_3$.

Survey on Contamination of Beauvericin and Enniatins in Korean Ginger and Ginger Powder (국내산 생강 및 생강가루의 Beauvericin과 Enniatins 오염도 조사)

  • Lee, Mi Jeong;Lim, Soo Bin;Choi, Jung-Hye;Kim, Jeomsoon;Lee, Theresa;Jang, Ja Yeong
    • Journal of Food Hygiene and Safety
    • /
    • v.37 no.5
    • /
    • pp.347-355
    • /
    • 2022
  • Levels of beauvericin (BEA) and enniatins (ENNs: ENA, ENA1, ENB, and ENB1) were examined in fresh ginger (n = 43) and ginger powder (n = 31) samples from Korea. In the ginger samples, incidence of BEA contamination was highest, at 62.79%, with a maximum detected BEA level of 640.07 ㎍/kg. ENNs in were found in up to 11.63% (ENB, ENB1) of ginger samples, with a maximum detected level of 91.02 ㎍/kg (ENA). In the ginger powders, ENB contamination displayed the highest rate of incidence (70.97%), but the highest level of BEA (1,344.18 ㎍/kg) exceeded that of ENB (413.99 ㎍/kg). The incidences of ENA, ENA1, ENB, and ENB1 presence in ginger powders were 29.03%, 22.58%, 70.97%, and 35.48%, respectively, and their highest detected levels were 220.45, 156.61, 413.99, and 70.29 ㎍/kg, respectively. The incidence of BEA and ENN contamination was higher in ginger powder than in ginger. Respective co-occurrence rates of BEA and ENNs in ginger and ginger powder samples were 16.28% and 64.52%, indicating that the BEA and ENN co-contamination rate was highest in ginger powder as well. This is the first report on the presence and co-occurrence of BEA and ENNs in Korean ginger and ginger powder.

Alteration of Media Composition and Light Conditions Change Morphology, Metabolic Profile, and Beauvericin Biosynthesis in Cordyceps bassiana Mycelium

  • Hyun, Sun-Hee;Lee, Seok-Young;Park, Shin Jung;Kim, Da Yeon;Chun, Young-Jin;Sung, Gi-Ho;Kim, Seong Hwan;Choi, Hyung-Kyoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.1
    • /
    • pp.47-55
    • /
    • 2013
  • Metabolic alterations of Cordyceps bassiana mycelium were investigated under the following culture medium and light conditions: dextrose agar supplemented with 0.5% yeast extract (SDAY) medium with light (SL), SDAY medium without light (SD), nut medium without light (ND), and iron-supplemented SDAY medium without light (FD). The levels of asparagine, aspartic acid, glutamic acid, glutamine, histidine, lysine, ornithine, and proline were significantly higher under SD and SL conditions. The levels of most of the alcohols, saturated fatty acids, unsaturated fatty acids, fatty acid esters, sterols, and terpenes were higher under the ND condition than in the other conditions, but beauvericin was not detectable under the ND condition. The FD condition was favorable for the enhanced production of aminomalonic acid, malic acid, mannonic acid, and erythritol. Thus, the metabolic characteristics of C. bassiana can be manipulated by varying the cultivation conditions, rendering this fungus potentially favorable as a nutraceutical and medicinal resource.

The Stress-Responsive and Host-Oriented Role of Nonribosomal Peptide Synthetases in an Entomopathogenic Fungus, Beauveria bassiana

  • Liu, Hang;Xie, Linan;Wang, Jing;Guo, Qiannan;Yang, Shengnan;Liang, Pei;Wang, Chengshu;Lin, Min;Xu, Yuquan;Zhang, Liwen
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.3
    • /
    • pp.439-449
    • /
    • 2017
  • Beauveria bassiana infects a number of pest species and is known to produce insecticidal substances, such as the nonribosomal peptides (NRPs) beauvericin and bassianolide. However, most NRPs and their biological roles in B. bassiana remain undiscovered. To identify NRPs that potentially contribute to pathogenesis, the 21 predicted NRP synthetases (NRPSs) or NRPS-like proteins of B. bassiana ARSEF 2860 were primarily ranked into three functional groups: basic metabolism (7 NRPSs), pathogenicity (12 NRPSs), and unknown function (2 NRPSs). Based on the transcript levels during in vivo growth on diamondback moth (Plutella xylostella (Linnaeus)), half of the Group II NRPSs were likely to be involved in infection. Given that the metabolites biosynthesized by these NRPSs remain to be determined, our result underlines the importance of the NRPSome in fungal pathogenesis, and will serve as a guide for future genomic mining projects to discover functionally essential and structurally diverse NRPs in fungal genomes.

Effect of Saccharomyces cerevisiae consumption on the pathogenicity of Beauveria bassiana in Protaetia brevitarsis

  • Kwak, Kyu-Won;Han, Myung-Sae;Nam, Sung-Hee;Park, Kwan-Ho;Kim, Eun-Sun;Lee, Seokhyun;Song, Myung-Ha;Kim, Wontae;Choi, Ji-Young
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.33 no.1
    • /
    • pp.1-5
    • /
    • 2016
  • Beauveria bassiana is a common fungal pathogen of Protaetia brevitarsis larvae, and although it is less common than Metarhizium anisopliae , the pathogen still poses a great risk to humans and animals that consume infected insects, owing to B. bassiana's production of toxins like beauvericin and mycotoxin. Interestingly, the beneficial microorganism Saccharomyces cerevisiae possesses antifungal properties. In the present study, we found that S. cerevisiae inhibited the growth of B. bassiana by 97% and that S. cerevisiae failed to harm P. brevitarsis when administered via intracoelomic injection (1×107 cfu/mL). In addition, we also found that S. cerevisiae consumption increased the survival time of percutaneously infected P. brevitarsis larvae by 5 d and reduced the mortality of infected larvae by 12%. Therefore, S. cerevisiae is expected to be useful in the prevention and control of B. bassiana in the production of P. brevitarsis larvae.