• Title/Summary/Keyword: Bitcoin address

Search Result 5, Processing Time 0.018 seconds

A Study of Bitcoin Transaction Tracking Method through Illegal Community (불법 커뮤니티를 통한 비트코인 거래 추적 방법에 관한 연구)

  • Jeong, Sejin;Kwak, Nohyun;Kang, Brent Byunghoon
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.28 no.3
    • /
    • pp.717-727
    • /
    • 2018
  • When illegal transactions are made with bitcoin, it's not easy to track all the bitcoins used in the transaction and seize them. Especially, if criminals distribute illegal transactions by spreading them to several bitcoin addresses, it's difficult to track hidden bitcoins other than confiscated bitcoins even if some bitcoins are confiscated. This paper proposes a method for tracking and monitoring all bitcoin transactions suspected of illegal transactions. This method estimates bitcoin addresses that are highly relevant to crime among all bitcoin addresses that dealing with the address based on the bitcoin address list of the alleged crime, and keeps track of addresses that are relevant to crime and help to investigate illegal bitcoin transaction.

A Study on the Robustness of the Bitcoin Lightning Network (Bitcoin Lightning Network의 강건성에 대한 연구)

  • Lee, Seung-jin;Kim, Hyoung-shick
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.28 no.4
    • /
    • pp.1009-1019
    • /
    • 2018
  • Bitcoin is the first application utilizing the blockchain, but it has limitations in terms of scalability. The concept of Lightning Network was recently introduced to address the scalability problem of Bitcoin. In this paper, we found that the real-world Bitcoin Lightning Network shows the scale-free property. Therefore, the Bitcoin Lightning Network can be vulnerable to the intentional attacks targeting some specific nodes in the network while it is still robust to the random node failures. We experimentally analyze the robustness of the Bitcoin's Lightning Network via the simulation of network attack model. Our simulation results demonstrate that the real-world Lightning Network is vulnerable to target attacks that destroy a few nodes with high degree.

TPS Analysis, Performance Indicator of Public Blockchain Scalability

  • Hyug-Jun Ko;Seong-Soo Han
    • Journal of Information Processing Systems
    • /
    • v.20 no.1
    • /
    • pp.85-92
    • /
    • 2024
  • In recent years, Bitcoin and Ethereum have witnessed a surge in trading activity, driven by venture capital investment and funding through initial coin offerings (ICOs) and initial exchange offerings (IEOs). This heightened interest has led to kickstarting a vibrant ecosystem for blockchain development. The total number of cryptocurrencies listed on CoinMarketCap.com has reached 2,274 highlights how dynamic and wide blockchain development landscape has grown. In blockchain development, new blockchain projects are being created by forking blockchains inspired by major cryptocurrencies such as Bitcoin and Ethereum. These projects aim to address the perceived shortcomings and improve existing technologies. Altcoins, representing these alternative cryptocurrencies, are an ongoing industry effort to improve performance and security with enhancement proposals such as Bitcoin Improvement Proposals (BIP), Ethereum Improvement Proposals (EIP), and EOSIO Enhancement Proposals (EEP). With competitive attempts to improve blockchain performance and security, an ongoing performance race between various blockchains has taken shape, each claiming its own performance advantages. In this paper, we describe the transactions contained in the blocks of each representative blockchain, and find the factors that affect the transactions per second (TPS) through transaction processing and block generation processes, and suggest their relationship with scalability.

First Smart Contract Allowing Cryptoasset Recovery

  • Kim, Beomjoong;Kim, Hyoung Joong;Lee, Junghee
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.3
    • /
    • pp.861-876
    • /
    • 2022
  • Cryptoassets such as Bitcoin and Ethereum are widely traded around the world. Cryptocurrencies are also transferred between investors. Cryptocurrency has become a new and attractive means of remittance. Thus, blockchain-based smart contracts also attract attention when central banks design digital currencies. However, it has been discovered that a significant amount of cryptoassets on blockchain are lost or stranded for a variety of reasons, including the loss of the private key or the owner's death. To address this issue, we propose a method for recoverable transactions that would replace the traditional transaction by allowing cryptoassets to be sent to a backup account address after a deadline has passed. We provide the computational workload required for our method by analyzing the prototype. The method proposed in this paper can be considered as a good model for digital currency design, including central bank digital currency (CBDC).

Secure large-scale E-voting system based on blockchain contract using a hybrid consensus model combined with sharding

  • Abuidris, Yousif;Kumar, Rajesh;Yang, Ting;Onginjo, Joseph
    • ETRI Journal
    • /
    • v.43 no.2
    • /
    • pp.357-370
    • /
    • 2021
  • The evolution of blockchain-based systems has enabled researchers to develop nextgeneration e-voting systems. However, the classical consensus method of blockchain, that is, Proof-of-Work, as implemented in Bitcoin, has a significant impact on energy consumption and compromises the scalability, efficiency, and latency of the system. In this paper, we propose a hybrid consensus model (PSC-Bchain) composed of Proof of Credibility and Proof of Stake that work mutually to address the aforementioned problems to secure e-voting systems. Smart contracts are used to provide a trustworthy public bulletin board and a secure computing environment to ensure the accuracy of the ballot outcome. We combine a sharding mechanism with the PSC-Bchain hybrid approach to emphasize security, thus enhancing the scalability and performance of the blockchain-based e-voting system. Furthermore, we compare and discuss the execution of attacks on the classical blockchain and our proposed hybrid blockchain, and analyze the security. Our experiments yielded new observations on the overall security, performance, and scalability of blockchain-based e-voting systems.