• Title/Summary/Keyword: Bone Morphogenesis

Search Result 25, Processing Time 0.025 seconds

Study on the Polyphosphate content of the Yukmijihwang-tang and its Effect on transcription activity of Genes related to Bone Morphogenesis (육미지황탕의 인중합체 함량과 골형성 관련 유전자의 전사활성에 대한 연구)

  • Park Byung Chul;Cha Yun Yeop;Lee Eung Se
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.18 no.6
    • /
    • pp.1769-1776
    • /
    • 2004
  • The aim of this study was to find out the effects of the Yukmijihwangtang on transcription activity of Genes related to Bone Morphogenesis. For this purpose, experiments were performed to compare the polyphosphate contents of Yukmijihwangtang and its component herbs, and to verify their Effects on transcription activity of Genes related to Bone Morphogenesis. We know that Yukmijihwangtang and its component herbs have adequate amount of polyphosphate contents and have effects on transcription activity of Genes such as BMP1A, BMP2B, OTN, MGP, COL. In the conclusion, Yukmijihwangtang and its component herbs are strongly believed to have effectiveness on bone morphogenesis.

Study on the Effects of Germinated Rhynchosia Volubilis on Osteosarcoma HOS-TE85 Related to Bone Morphogenesis (발아 서목태가 골육종세포 중 HOS-TE85의 골형성에 미치는 영향)

  • Kim Jin Yeon;Cha Yun Yeop;Lee Eung Se
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.18 no.6
    • /
    • pp.1635-1642
    • /
    • 2004
  • The aim of this study was to find out the effectiveness on germinated Rhynchosia Volubilis for Female Bone Morphogenesis. For this purpose, experiments using germinated Rhynchosia Volubilis(GRV) according to germinating days were conducted to measure the polyphosphate contents and to examine the effects of the transcription activity of gene related to bone morphogenesis on the formation of bone in female. The quantitative analysis of the polyphosphate contents showed that 1 day geminated Rhynchosia Volubilis(GRV) group is treble better contents of polyphosphate than non-germinated Rhynchosia Volubilis, 2 day and 3 day GRV groups. The active of the COL1, OTN, MGP, BMP genes was less than the increase of the polyphosphate contents.

Study on the Benefits of Germinated Seed of Rhynchosia Volubilis on Osteosarcoma HOS-TE85 Related to Bone Morphogenesis and Effective Abstraction Research (발아 서목태(發芽 鼠目太)의 추출방법별 인중합체 함량과 골형성 관련 유전자(HOS-TE85)의 활성화 연구)

  • Lee Seok-Won;Cha Yun-Yeop
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.19 no.5
    • /
    • pp.1317-1322
    • /
    • 2005
  • The aim of this study was to find out the effectiveness on germinated seed of Rhynchosia Volubilis for Female Bone Morphogenesis. For this purpose, We compared two methods. water extract and alcohol extract using germinated Rhynchosia Volubilis(GRV) according to germinating days were conducted to measure the polyphosphate contents and investigate HOS-TE85 propagation rate. Both water and alcohol extract two methods were not toxicant. And if not excessively treated, alcohol extract rate were more about $5{\sim}15$ times than water extract rate. So usually water extract were better than alcohol extract. but in case of osteoporosis, alcohol extract were effective.

A Study on the Morphogenesis of Human Fetal Hepatic Tissue (사람태아 간조직의 형태형성에 관한 연구)

  • Deung, Young-Kun;Kim, Dong-Heui
    • Applied Microscopy
    • /
    • v.28 no.3
    • /
    • pp.283-297
    • /
    • 1998
  • Hemopoiesis and morphogenesis of the human fetal liver through from 10 to 32 weeks of gestation were investigated by light and electron microscopy. The results obtained were as follows. Hemopoiesis of fetal liver tissue was found from 10 to 32 weeks of gestation, but the hemopoiesis was decreased at 32 weeks of gestation. At the 32 weeks of gestation, matured erythrocytes were observed in the sinusoid, and formation of liver cell cord and portal triad were established. Differentiation of hepatic cell was characterized by the increase of amount of cell organelles within cytoplasm, decrease of hemopoietic cell, morphological change of nuclear envelope from folding form to round form during the developmental period. These results suggest that human fetal liver plays a hematopoietic function until bone marrow and spleen play their function, but morphology of liver at 32 weeks of gestation was differed with structure observed in liver of adult.

  • PDF

Bone remodeling effects of Korean Red Ginseng extracts for dental implant applications

  • Kang, Myong-Hun;Lee, Sook-Jeong;Lee, Min-Ho
    • Journal of Ginseng Research
    • /
    • v.44 no.6
    • /
    • pp.823-832
    • /
    • 2020
  • Background: The formation of a nanotube layer on a titanium nanotube (N-Ti) plate facilitates an active reaction between bone cells and the material surface via efficient delivery of the surface materials of the dental implant into the tissues. Studies have reported that Korean Red Ginseng extracts (KRGEs) are involved in a variety of pharmacological activities: we investigated whether implantation with a KRGE-loaded N-Ti miniimplant affects osteogenesis and osseointegration. Methods: KRGE-loaded nanotubes were constructed by fabrication on pure Ti via anodization, and MC3T3-E1 cells were cultured on the N-Ti. N-Ti implants were subsequently placed on a rat's edentulous mandibular site. New bone formation and bone mineral density were measured to analyze osteogenesis and osseointegration. Results: KRGE-loaded N-Ti significantly increased the proliferation and differentiation of MC3T3-E1 cells compared with cells on pure Ti without any KRGE loading. After 1-4 weeks, the periimplant tissue in the edentulous mandibular of the healed rat showed a remarkable increase in new bone formation and bone mineral density. In addition, high levels of the bone morphogenesis protein-2 and bone morphogenesis protein-7, besides collagen, were expressed in the periimplant tissues. Conclusion: Our findings suggest that KRGE-induced osteogenesis and osseointegration around the miniimplant may facilitate the clinical application of dental implants.

THE EFFECT OF BONE MORPHOGENETIC PROTEIN 2(BMP2) ON THE GROWTH OF CRANIAL BONE AND EARLY MORPHOGENESIS OF THE CRANIAL SUTURE (Bone Morphogenetic Protein 2 가 두개골 성장 및 두개봉합부의 초기형태발생에 미치는 영향)

  • Jung, Hae-Kyung;Park, Mi-Hyun;Ryoo, Hyun-Mo;Nam, Soon-Hyeun;Kim, Young-Jin;Kim, Hyun-Jung
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.30 no.2
    • /
    • pp.217-228
    • /
    • 2003
  • Co-ordinate growth of the brain and skull is achieved through a series of tissue interactions between the developing brain, the growing bones of the skull and the sutures that unite the bones. Craniosynostosis, the premature fusion of cranial sutures, presumably involves disturbance of these interactions. Bmp2, one of bone morphogenetic proteins (Bmps), is involved in the regulation of the shapes of individual bones and the relative proportions of the skeleton. Mutations in the homeobox gene Msx2, known as a downstream gene of Bmp, cause Boston-type human craniosynostosis. The phenotype of Dlx5 homozygote mutant mouse presents craniofacial abnormalities including a delayed ossification of calvarial bone. These facts suggest important roles of Bmp2, Msx2 and Dlx5 genes in the cranial bone growth and suture morphogenesis. To elucidate the function of these molecules in the early morphogenesis of mouse cranial sutures, we first analyzed by in situ hybridization the expression of Bmp2(E15-18), Msx2 and Dlx5 genes in the developing sagittal suture of calvaria during the embryonic stage. Bmp2 mRNA was intensely expressed in the osteogenic fronts and also at the low level in the periosteum of parietal bones during embryonic stage, Msx2 mRNA was intensely expressed in the sutural mesenchyme and mildly expressed in the dura mater during the embryonic stage. Dlx5 mRNA was intensely expressed osteogenic fronts and parietal bones. To further examine the role of Bmp signaling in cranial suture, we did in vitro experiments in E15.5 mouse calvarial explants. Interestingly, implantation of Bmp2-soaked beads onto the osteogenic fronts after 48 hours organ culture resulted in the increase of the tissue thickness and cell number around Bmp2 beads, compared to BSA control beads. In addition Bmp2 induced etopic expressions of Msx2 and Dlx5 genes. On the other hand, overexpression of FGF2 did not induce the expression of Msx2 and Dlx5. Taken together, these data indicate that Bmp2 signaling molecule has a important role in regulating the cranial bone growth and early morphogenesis of cranial suture. We also suggest that Bmp signaling is involved in all the stages of osteogenesis of cranial bones and the maintenance of cranial suture by regulating Msx2 and Dlx5 genes, and that Msx2 and Dlx5 genes are specific transcription factors of Bmp signaling pathway.

  • PDF

THE EXPRESSION PATTERN OF BMPS AND THEIR RECEPTORS IN CALVARIAL SUTURE DEVELOPMENT (두개봉합부의 초기형태발생과정에서 BMP와 그 수용체의 발현 양상)

  • Yune, Yang-Ha;Lee, Sang-Won;Park, Mi-Hyun;Ryoo, Hyun-Mo;Nam, Soon-Hyeun;Kim, Young-Jin;Kim, Hyun-Jung
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.29 no.3
    • /
    • pp.345-353
    • /
    • 2002
  • Bone morphogenetic proteins(BMPs) are secretory signal molecules which have a variety of regulatory functions during morphogenesis and cell differentiation. To evaluate roles of BMPs and their receptors on mouse sagittal suture development, we have examined their expression patterns in serial sections of sagittal sutures by in situ hybridization during embryonic stages(E15-E18). BMP-2 and BMP-3 were expressed in the osteogenic front and parietal bone on embryonic 15day, from E16 in hair follicle. BMP-4 was strongly expressed in the osteogenic front and weakly expressed in the mesenchyme and parietal bone. BMP-S was expressed in the hair follicles. BMP-6 was not expressed in this study. BMP-7 was expressed in parietal bone during embryonic stage. BMPR-IB was expressed in the osteogenic front, but BMPR-IA was not. From these datas, we suggest that the BMP-4 regulates the early commitment of mesenchymal cells to the osteogenic lineages, the BMP-2 and BMP-3 may be involved in regulating the differentiation of osteoblast precursor cells. BMP-7 was involved in maintenance of differentiated osteoblasts. BMPs were key signaling molecules that regulate early calvarial bone morphogenesis, mediated by BMPR-IB.

  • PDF

Osteogenic Potency of Nacre on Human Mesenchymal Stem Cells

  • Green, David W.;Kwon, Hyuk-Jae;Jung, Han-Sung
    • Molecules and Cells
    • /
    • v.38 no.3
    • /
    • pp.267-272
    • /
    • 2015
  • Nacre seashell is a natural osteoinductive biomaterial with strong effects on osteoprogenitors, osteoblasts, and osteoclasts during bone tissue formation and morphogenesis. Although nacre has shown, in one study, to induce bridging of new bone across large non-union bone defects in 8 individual human patients, there have been no succeeding human surgical studies to confirm this outstanding potency. But the molecular mechanisms associated with nacre osteoinduction and the influence on bone marrow-derived mesenchymal stem cells (BMSC's), skeletal stem cells or bone marrow stromal cells remain elusive. In this study we highlight the phenotypic and biochemical effects of Pinctada maxima nacre chips and the global nacre soluble protein matrix (SPM) on primary human bone marrow-derived stromal cells (hBMSCs) in vitro. In static co-culture with nacre chips, the hBMSCs secreted Alkaline phosphatase (ALP) at levels that exceeded bone morphogenetic protein (rhBMP-2) treatment. Concentrated preparation of SPM applied to Stro-1 selected hBMSC's led to rapid ALP secretions, at concentrations exceeding the untreated controls even in osteogenic conditions. Within 21 days the same population of Stro-1 selected hBMSCs proliferated and secreted collagens I-IV, indicating the premature onset of an osteoblast phenotype. The same SPM was found to promote unselected hBMSC differentiation with osteocalcin detected at 7 days, and proliferation increased at 7 days in a dose-dependent manner. In conclusion, nacre particles and nacre SPM induced the early stages of human bone cell differentiation, indicating that they may be promising soluble factors with osteoinductive capacity in primary human bone cell progenitors such as, hBMSC's.

Genetic determinants of periosteum-mediated craniofacial bone regeneration: a systematic review

  • Eyituoyo Okoturo
    • Archives of Craniofacial Surgery
    • /
    • v.24 no.6
    • /
    • pp.251-259
    • /
    • 2023
  • Background: Periosteum-mediated bone regeneration (PMBR) is a recognized method for mandibular reconstruction. Despite its unpredictable nature and the limited degree to which it is understood, it does not share the concerns of developmental changes to donor and recipient tissues that other treatment options do. The definitive role of the periosteum in bone regeneration in any mammal remains largely unexplored. The purpose of this study was to identify the genetic determinants of PMBR in mammals through a systematic review. Methods: Our search methodology was designed in accordance with the PRISMA (Preferred Reporting Items for Systematic Review and Meta-Analysis) guidelines. We conducted a quality assessment of each publication, and evaluated the differences in gene expression between days 7 and 15. Results: A total of four studies satisfied the inclusion criteria. The subjects and tissues examined in these studies were Wistar rat calvaria in two studies, mini-pigs in one study, and calves and mice in one study. Three out of the four studies achieved the necessary quality score of ≥ 3. Gene expression analysis showed increased activity of genes responsible for angiogenesis, cytokine activities, and immune-inflammatory responses on day 7. Additionally, genes related to skeletal development and signaling pathways were upregulated on day 15. Conclusions: The results suggest that skeletal morphogenesis is regulated by genes associated with skeletal development, and the gene expression patterns of PMBR may be characterized by specific pathways.

THE ROLE OF BONE MORPHOGENETIC PROTEIN IN THE TOOTH CULTURE (치아 기관배양시 골형성단백의 역할에 관한 연구)

  • Chung, Il-Hyuk;Chung, Jong-Hoon;Choung, Pill-Hoon
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.30 no.5
    • /
    • pp.438-443
    • /
    • 2004
  • Objectives : The proper development of the facial structures relies upon a sequence of tightly regulated signaling interactions between the ectoderm and mesoderm involving the participation of several families of signaling molecules. Among these, bone morphogenetic proteins (BMPs) have been suggested to be a key signal that regulates the development of the mandible and the initiation and morphogenesis of the teeth. The aim of this study was to examine the artificial development of the mandibular structures and to examine the role of BMPs on tooth morphogenesis and differentiation using an organ culture system. Materials and Methods : The tooth germs from Ed 11.5, 13.5 mice were dissected, and transplanted into the diastema of the mandible primordia. The mandibles containing the transplanted tooth germs were cultured in vitro. During this period, beads soaked with BMP4 were implanted around the transplanted tooth germs. In addition, a diastema block containing the transplanted tooth germ was dissected, then transferred to an adult mouse kidney. After the organ culture, the developing mandibular explant was removed from the kidney and prepared for the tissue specimens. Odontogeneis of the transplanted tooth germs was examined after Hematoxylin-eosin, Masson-trichrome staining. Results : Proliferation and differentiation of the tooth germs cultured in the diastema was observed. In the BMP4-treated tooth germs, the formation of the first and second molars was noted. The crown of the developing tooth showed the formation of a mature cusp with the deposition of enamel and dentin matrix. In conclusion, it was confirmed that BMP4 is involved in the formation of a dental crown and the differentiation of ameloblasts and odontoblasts of the molar tooth during the development of the transplanted tooth germs.