• Title/Summary/Keyword: Bone marrow microenvironment

Search Result 24, Processing Time 0.025 seconds

Role of neuropeptide Y in the bone marrow hematopoietic stem cell microenvironment

  • Park, Min Hee;Min, Woo-Kie;Jin, Hee Kyung;Bae, Jae-sung
    • BMB Reports
    • /
    • v.48 no.12
    • /
    • pp.645-646
    • /
    • 2015
  • The sympathetic nervous system (SNS) or neurotransmitters in the bone marrow microenvironment has been known to regulate hematopoietic stem cell (HSC) functions such as self-renewal, proliferation and differentiation. However, the specific role of neuropeptide Y (NPY) in this process remains relatively unexplored. In this study, we demonstrated that NPY deficient mice have significantly reduced HSC numbers and impaired bone marrow regeneration due to apoptotic destruction of SNS fibers and/or endothelial cells. Moreover, NPY treatment prevented bone marrow impairments in a mouse model of chemotherapy-induced SNS injury, while conditional knockout mice lacking the Y1 receptor in macrophages did not restore bone marrow dysfunction in spite of NPY injection. Transforming growth factor-beta (TGF-β) secreted by NPY-mediated Y1 receptor stimulation in macrophages plays a key role in neuroprotection and HSC survival in the bone marrow. Therefore, this study reveals a new role of NPY in bone marrow HSC microenvironment, and provides an insight into the therapeutic application of this neuropeptide.

Diagnostic and Prognostic Relevance of Bone Marrow Microenvironment Components in Non Hodgkin's Lymphoma Cases Before and After Therapy

  • Soliman, Amira H
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.12
    • /
    • pp.5273-5280
    • /
    • 2016
  • Objective: To evaluate stromal cells of the bone marrow microenvironment (BMM) in bone marrow trephine biopsy (BMTB) specimens, with a focus on fibronectin, tumor necrosis factor- alpha (TNF-${\alpha}$) and L-selectin in Non-Hodgkin's lymphoma (NHL) patients, before and after therapy. Materials and Methods: A total of 80 de novo NHL patients, 64 with B-cell lymphomas 80%, (follicular cell lymphoma (FCL) in 32, chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL/SLL) in 12, and diffuse large cell lymphoma in 20) and 16 with T-cell lymphomas (20%) all diagnosed as T-Lymphoblastic lymphomas, were evaluated before and after therapy. For comparison, 25 age and sex matched BM donors, were included as a control group. BMTB material and BM aspirates were taken for morphological assessment of stromal cells, the plasma of these samples being examined for $TNF{\alpha}$ and L-selectin by ELISA, and fibronectin by radial immunodiffusion (RID). Results: BM stromal cells comprising reticular macrophages and fibroblasts were elevated in 53.3% of NHL cases at diagnosis, while BM fibronectin levels were decreased and BM $TNF{\alpha}$ and L-selectin were higher than in controls (p<0.05). In NHL cases, elevated values of BM $TNF{\alpha}$ and BM L-selectin were associated with signs of aggressive disease, including >1 extra nodal sites, detectable B symptoms, high grade, BM and CNS invasion, and a high International prognostic index (IPI) (p<0.05). Conclusion: BMM components, $TNF{\alpha}$, L-selectin and fibronectin, in NHL can be useful in evaluating disease activity, extent and response to treatment and as prognostic markers according to the IPI.

Effect of Cytokines and bFGF on the Osteoclast Differentiation Induced by $1\;{\alpha},25-(OH)_2D_3$ in Primary Murine Bone Marrow Cultures

  • Chae, Han-Jung;Kang, Jang-Sook;Bang, Byung-Gwan;Cho, Seoung-Bum;Han, Jo-Il;Choi, Joo-Young;Kim, Hyung-Min;Chae, Soo-Wan;Kim, Hyung-Ryong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.3 no.6
    • /
    • pp.539-546
    • /
    • 1999
  • Bone is a complex tissue in which resorption and formation continue throughout life. The bone tissue contains various types of cells, of which the bone forming osteoblasts and bone resorbing osteoclasts are mainly responsible for bone remodeling. Periodontal disease represents example of abnormal bone remodeling. Osteoclasts are multinucleated cells present only in bone. It is believed that osteoclast progenitors are hematopoietic origin, and they are recruited from hematopoietic tissues such as bone marrow and circulating blood to bone. Cells present in the osteoclast microenvironment include marrow stromal cells, osteoblasts, macrophages, T-lymphocytes, and marrow cells. These cells produce cytokines that can affect osteoclast formation. In vitro model systems using bone marrow cultures have demonstrated that $IL-l{\beta},\;IL-3,\;TNF-{\alpha},$ bFGF can stimulate the formation of osteoclasts. In contrast, IL-4 inhibits osteoclast formation. Knowledge of cytokines and bFGF that affect osteoclast formation and their capacity to modulate the bone-resorbing process should provide critical insights into normal calcium homeostasis and disorders of bone turnover such as periodontal disease, osteoporosis and Paget's disease.

  • PDF

Hematopoietic Stem Cells and Bone Marrow Microenvironment: Current and Emerging Concepts (골수 미세환경에서 조혈줄기세포의 기능조절에 대한 고찰- 현재 및 새로운 개념)

  • Lee, Won Jong;Park, Seong Hyun;Park, Jun Hee;Oh, Seong Hwan;Lee, Dongjun
    • Journal of Life Science
    • /
    • v.32 no.6
    • /
    • pp.468-475
    • /
    • 2022
  • The functional distinction between stem and progenitor cells is well established in several tissues, particularly in the blood. There, hematopoietic stem cells preserve their self-renewal potential and reconstitution ability in the bone marrow niche. Bone marrow represents a unique setting in which to examine how stroma influences tissue function. It was the setting in which the experimental definition of a niche was first provided in mammalian stem cell biology and where clear evidence for non-cell-autonomous oncogenesis was first defined. The relationship between bone and blood is ancient as all animals since the divergence of fish that have bones and blood, make blood in their bones. This long coevolution engendered complex interrelationships, including the first proposed and first experimentally defined niche for stem cells in mammals. Multiple bone marrow stromal cell types serve as regulators of hematopoiesis, and the dysfunction of some causes myelodysplasia and leukemia. However, no comprehensive atlas of stromal subpopulations exists. Therefore, we think these data point to something of importance, such as how the needs and challenges of the organism become translated down to distinct cell types that critically govern specific functions within tissues and do so at the level of a single molecule. We think this will be of broad interest to those focusing on systems biology and the physiology of organisms, particularly those seeking a molecular basis for understanding cell and tissue behavior. We summarized the current and emerging concepts of hematopoietic stem cells and bone marrow niche.

Analysis of the Expression and Regulation of PD-1 Protein on the Surface of Myeloid-Derived Suppressor Cells (MDSCs)

  • Nam, Sorim;Lee, Aram;Lim, Jihyun;Lim, Jong-Seok
    • Biomolecules & Therapeutics
    • /
    • v.27 no.1
    • /
    • pp.63-70
    • /
    • 2019
  • Myeloid-derived suppressor cells (MDSCs) that are able to suppress T cell function are a heterogeneous cell population frequently observed in cancer, infection, and autoimmune disease. Immune checkpoint molecules, such as programmed death 1 (PD-1) expressed on T cells and its ligand (PD-L1) expressed on tumor cells or antigen-presenting cells, have received extensive attention in the past decade due to the dramatic effects of their inhibitors in patients with various types of cancer. In the present study, we investigated the expression of PD-1 on MDSCs in bone marrow, spleen, and tumor tissue derived from breast tumor-bearing mice. Our studies demonstrate that PD-1 expression is markedly increased in tumor-infiltrating MDSCs compared to expression in bone marrow and spleens and that it can be induced by LPS that is able to mediate $NF-{\kappa}B$ signaling. Moreover, expression of PD-L1 and CD80 on $PD-1^+$ MDSCs was higher than on $PD-1^-$ MDSCs and proliferation of MDSCs in a tumor microenvironment was more strongly induced in $PD-1^+$ MDSCs than in $PD-1^-$ MDSCs. Although we could not characterize the inducer of PD-1 expression derived from cancer cells, our findings indicate that the study on the mechanism of PD-1 induction in MDSCs is important and necessary for the control of MDSC activity; our results suggest that $PD-1^+$ MDSCs in a tumor microenvironment may induce tumor development and relapse through the modulation of their proliferation and suppressive molecules.

Laminin-1 Expression in Bone Marrow Stromal Cells of Cyclophosphamide-treated Rat (Cyclophosphamide가 흰쥐 골수의 기질세포에서 Laminin-1의 발현에 미치는 영향)

  • Lee, Chang-Hun;Chung, Ho-Sam;Paik, Doo-Jin;Hwang, Se-Jin;Kim, Won-Kyu;Youn, Jee-Hee;Kim, Chong-Kwan
    • Applied Microscopy
    • /
    • v.32 no.4
    • /
    • pp.385-398
    • /
    • 2002
  • The purpose of the present study is to investigate whether stromal cells supporting specific microenvironment for hematopoiesis of bone marrow are affected by toxicants and therapeutic drugs such as antibiotics and anticancer drugs and whether laminin-1 is associated with such effects. SD rats were intraperitoneally injected with 75 mg/kg of cyclophosphamide which is widely used to treat infant's solid tumor, leukemia and myeloma and sacrificed after 3 days, 1 week, 3 weeks or 5 weeks of injection. The bone marrow extracted and paraffin-sectioned was analyzed using immunohistochemical staining. A part of tissues was subjected to electron microscopy following reaction with rabbit anti-laminin antibody, biotinylated goat anti-rabbit IgG conjugated with 12 nm gold particles, and staining with uranyl acetate. 1. The bone marrow tissue at day 3 post injection with cyclophosphamide displayed dilated venous sinus, partial necrotic death, and decreased number of hematopoietic cells. Laminin-1 was intensively stained in the reticular and adipose tissues. 2. Up to 5 weeks post injection, laminin-1 was stained at a low level in the stromal tissue of bone marrow and the number of hematopoietic cell was increased. 3. Deposition of the gold particle which represents laminin-1 expression was observed at the highest level in the stromal cells of bone marrow obtained 3 days after injection, and decreased after 1 to 5 weeks. These results suggest that stromal cells which play a role in supporting microenvironment for bone marrow hematopoiesis augment induction of laminin-1 expression and activation upon administration of cyclophosphamide.

Impact of tumour associated macrophages in pancreatic cancer

  • Mielgo, Ainhoa;Schmid, Michael C.
    • BMB Reports
    • /
    • v.46 no.3
    • /
    • pp.131-138
    • /
    • 2013
  • During cancer progression, bone marrow derived myeloid cells, including immature myeloid cells and macrophages, progressively accumulate at the primary tumour site where they contribute to the establishment of a tumour promoting microenvironment. A marked infiltration of macrophages into the stromal compartment and the generation of a desmoplastic stromal reaction is a particular characteristic of pancreatic ductal adenocarcinoma (PDA) and is thought to play a key role in disease progression and its response to therapy. Tumour associated macrophages (TAMs) foster PDA tumour progression by promoting angiogenesis, metastasis, and by suppressing an anti-tumourigenic immune response. Recent work also suggests that TAMs contribute to resistance to chemotherapy and to the emergence of cancer stem-like cells. Here we will review the current understanding of the biology and the pro-tumourigenic functions of TAMs in cancer and specifically in PDA, and highlight potential therapeutic strategies to target TAMs and to improve current therapies for pancreatic cancer.

Effects of Leptin on Osteoclast Generation and Activity

  • Ko, Seon-Yle;Cho, Sang-Rae;Kim, Se-Won;Kim, Jung-Keun
    • International Journal of Oral Biology
    • /
    • v.30 no.2
    • /
    • pp.47-57
    • /
    • 2005
  • Leptin, the product of the obese gene, is a circulating hormone secreted primarily from adipocytes. Several results suggest that leptin is important mediators of bone metabolism. The present study was undertaken to determine the effects of leptin on anti-osteoclastogenesis using murine precursors cultured on Ca-P coated plates and on the production of osteoprotegerin (OPG) in osteoblastic cells. Additionally, this study examined the possible involvement of prostaglandin $E_2\;(PGE_2)$/protein kinase C (PKC)-mediated signals on the effect of leptin on anti-osteoclastogenesis to various culture systems of osteoclast precursors. Osteoclast generation was determined by counting tartrate-resistant acid phosphatase positive [TRAP (+)] multinucleated cells (MNCs). Osteoclastic activity was determined by measuring area of resorption pits formed by osteoclasts on Ca-P coated plate. The number of 1,25-dihydroxycholecalciferol $(1,25[OH]_2D_3)$- or $PGE_2$-induced TRAP (+) MNCs in the mouse bone marrow cell culture decreased significantly after treatment with leptin. The number of receptor activator of NF-kB ligand (RANKL)-induced TRAP (+) MNCs in M-CSF dependent bone marrow macrophage (MDBM) cell or RAW264.7 cell culture decreased significantly with leptin treatment. Indomethacin inhibited osteoclast generation induced by $1,25[OH]_2D_3$ and dexamethasone, however, no significant differences were found in the leptin treated group when compared to the corresponding indomethacin group. Phorbol 12-myristate 13-acetate (PMA), a PKC activator, inhibited osteoclast generation induced by $1,25[OH]_2D_3$. The number of TRAP (+) MNCs decreased significantly with treatment by PMA at concentrations of 0.01 and $0.1{\mu}M$ in culture. Leptin inhibited PMA-mediated osteoclast generation. Isoquinoline-5-sulfonic 2-methyl-1-piperazide dihydrochloride (H7) had no effect on osteoclast generation induced by $1,25[OH]_2D_3$. Cell culture treatment with leptin resulted in no significant differences in osteoclast generation compared to the corresponding H7 group. Indomethacin showed no significant effect on TRAP (+) MNCs formation from the RAW264.7 cell line. PMA inhibited TRAP (+) MNCs formation induced by RANKL in the RAW264.7 cell culture. H7 had no effect on osteoclast generation from the RAW264.7 cell line. There was no difference compared with the corresponding control group after treatment with leptin. $1,25[OH]_2D_3$- or $PGE_2$-induced osteoclastic activity decreased significantly with leptin treatment at a concentration of 100 ng/ml in mouse bone marrow cell culture. Indomethacin, PMA, and H7 significantly inhibited osteoclastic activity induced by $1,25[OH]_2D_3$ in mouse bone marrow cell culture. No significant differences were found between the leptin treated group and the corresponding control group. The secretion of OPG, a substance known to inhibit osteoclast formation, was detected from the osteoblasts. Treatment by leptin resulted in significant increases in OPG secretion by osteoblastic cells. Taken these results, leptin may be an important regulatory cytokines within the bone marrow microenvironment.

Effects of Phytoecdysteroid on the Proliferation and Activity of Bone Cells (Phytoecdysteroid가 조골세포와 파골세포의 성장과 활성에 미치는 영향)

  • Ko, Seon-Yle
    • Journal of Oral Medicine and Pain
    • /
    • v.32 no.2
    • /
    • pp.129-135
    • /
    • 2007
  • Ecdysteroids are known as insect molting hormone. At the same time, ecdysteroids and plant ecdysteroids (phytoecdysteorids) reveal beneficial effects on mammal. The present study was undertaken to determine the possible cellular mechanism of action of phytoecdysteroids in bone metabolism. The effects on the osteoblasts were determined by measuring cell proliferation, alkaline phosphatase (ALP) activity, and gelatinase activity. The effects on the osteoclasts were investigated by measuring tartrate-resistant acid phosphatase (TRAP)(+) multinucleated cells (MNCs) formation after culturing osteoclast precursors. Phytoecdysteroid treatment showed a increase in ALP activity of osteoblasts. Phytoecdysteroid increased the activity of gelatinase. In addition, phytoecdysteroid decreased the osteoclast generation induced by macrophage-colony stimulating factor (M-CSF) and receptor activator of NF-kB ligand (RANKL) in (M-CSF)-dependent bone marrow macrophage (MDBM) cell cultures. Taken these results, phytoecdysteroid may be a regulatory protein within the bone marrow microenvironment.

Effects of Angiopoietin-2 on the Proliferation and Activity of Ostoeblasts and Osteoclasts (Angiopoietin-2가 조골세포와 파골세포의 성장과 활성에 미치는 영향)

  • Ko, Seon-Yle
    • Journal of Oral Medicine and Pain
    • /
    • v.31 no.1
    • /
    • pp.17-25
    • /
    • 2006
  • The present study was undertaken to determine the possible cellular mechanism of action of angiopoietin-2 in bone metabolism. The effects on the osteoblasts were determined by measuring 1) cell viability, 2) alkaline phosphatase (ALP) activity, 3) gelatinase activity, and 4) nitric oxide production. The effects on the osteoclasts were investigated by measuring 1) tartrate-resistant acid phosphatase (TRAP)(+) multinucleated cells (MNCs) formation, and 2) resorption areas after culturing osteoclast precursors. Angiopoietin-2 treatment showed a significant increase in both the viability and ALP activity of osteoblasts. Angiopoietin-2 increased the activity of gelatinase and nitric oxide production. In addition, angiopoietin-2 decreased the osteoclast generation induced by macrophage-colony stimulating factor (M-CSF) and receptor activator of NF-kB ligand (RANKL), and inhibited osteoclastic activity in (M-CSF)-dependent bone marrow macrophage (MDBM) cell cultures. Taken these results, angiopoietin-2 may be a regulatory protein within the bone marrow microenvironment.