• Title/Summary/Keyword: Branched-chain Amino Acids

Search Result 66, Processing Time 0.023 seconds

The Effects of Branched Chain Amino Acids and Small Metabolites on the Biosynthesis of Acetolactate Synthase in Serratia rnarcescens ATCC 25419 (Branched Chain 아미노산과 대사산물들이 Serratia marcescens ATCC 25419 Acetolactate Synthase의 생합성에 미치는 영향)

  • 최병범;김승수
    • Microbiology and Biotechnology Letters
    • /
    • v.20 no.2
    • /
    • pp.115-121
    • /
    • 1992
  • The effects of branched chain amino acids and small metabolites in growth media on the biosynthesis of Serratia marcescens ATCC 25419 acetolactate synthase (ALS) were examined. ALS activ~ty was gradually decreased by isoleucme or leucine among the range from 1 mM to 20 rnM, while the activity was increased 40% by isoleucine under low concentration (0.5 mM). ALS activity was also increased about 40% by valine among 2 to 4 mM ranges, but the activity was decreased only 10% at 20 mM. ALS activity was decreased 25% and 70% by the simultaneous addition of all three branched chain amino acids at 2 mM and 10 mM, respectively. Among several small metabolites tested, ALS activity was increased about 2-fold by cAMP at 2 mM. These data suggest that Sorrtrtiti rnorcewns ALS is muitivalently repressed by branched chain amino acids, but not repressed by valine alone.

  • PDF

Modulation of Branched-Chain Amino Acid Metaolism by Exercise in Rats

  • Kim, Hyun-Sook
    • Journal of Nutrition and Health
    • /
    • v.27 no.9
    • /
    • pp.892-900
    • /
    • 1994
  • A variety of important roles for branched-chain amino acids in metabolic regulation has been suggested. Branched-chain $\alpha$-keto acid dehydrogenase(BCKAD) complex is a rate limiting enzyme in branched-chain amino acid metabolism. The purpose of this study was to examine the effects of exercise on the activity and activity state of branched-chain $\alpha$-keto acid dehydrogenase in rat hert and liver thssues. Forty-eight Sprague-Dawley rats were assigned into three experimental groups : sedentary control, exercised, or exercised-rested. Submaximal exercise(running) for two hours significantly increased basal activity without a change in total activity in both tissues, with a concomitiant increase in activity state of the enzyme complex. At 10 min post-exercise, heart enzyme activity significantly decreased, though not to the control level, while liver enzyme activity remained unchanged. These data suggested that the exercise-induced increase in branched-chain $\alpha$-keto acid decarboxylation in rat tissues may not be the result of enzyme synthesis, but rather is due to increased activity of the BCKAD.

  • PDF

Transcriptome analysis of a transgenic Arabidopsis plant overexpressing CsBCAT7 reveals the relationship between CsBCAT7 and branched-chain amino acid catabolism

  • Kim, Young-Cheon;Lee, Dong Sook;Jung, Youjin;Choi, Eun Bin;An, Jungeun;Lee, Sanghyeob;Lee, Jeong Hwan
    • Journal of Plant Biotechnology
    • /
    • v.48 no.4
    • /
    • pp.228-235
    • /
    • 2021
  • The amino acids found in plants play important roles in protein biosynthesis, signaling processes, and stress responses, and as components in other biosynthesis pathways. Amino acid degradation helps maintain plant cells' energy states under certain carbon starvation conditions. Branched-chain amino acid transferases (BCATs) play an essential role in the metabolism of branched-chain amino acids (BCAAs) such as isoleucine, leucine and valine. In this paper, we performed genome-wide RNA-seq analysis using CsBCAT7-overexpressing Arabidopsis plants. We observed significant changes in genes related to flowering time and genes that are germination-responsive in transgenic plants. RNA-seq and RT-qPCR analyses revealed that the expression levels of some BCAA catabolic genes were upregulated in these same transgenic plants, and that this correlated with a delay in their senescence phenotype when the plants were placed in extended darkness conditions. These results suggest a connection between BCAT and the genes implicated in BCAA catabolism.

Regulation of Branched-Chain, and Sulfur-Containing Amino Acid Metabolism by Glutathione during Ultradian Metabolic Oscillation of Saccharomyces cerevisiae

  • Sohn Ho- Yong;Kum Eun-Joo;Kwon Gi-Seok;Jin Ingnyol;Kuriyama Hiroshi
    • Journal of Microbiology
    • /
    • v.43 no.4
    • /
    • pp.375-380
    • /
    • 2005
  • Autonomous ultradian metabolic oscillation (T$\simeq$50 min) was detected in an aerobic chemostat culture of Saccharomyces cerevisiae. A pulse injection of GSH (a reduced form of glutathione) into the culture induced a perturbation in metabolic oscillation, with respiratory inhibition caused by $H_2S$ burst pro-duction. As the production of $H_2S$ in the culture was controlled by different amino acids, we attempted to characterize the effects of GSH on amino acid metabolism, particularly with regard to branched chain and sulfur-containing amino acids. During stable metabolic oscillation, concentrations of intra-cellular glutamate, aspartate, threonine, valine, leucine, isoleucine, and cysteine were observed to oscil-late with the same periods of dissolved $O_2$ oscillation, although the oscillation amplitudes and maximal phases were shown to differ. The methionine concentration was stably maintained at 0.05 mM. When GSH (100 $\mu$M) was injected into the culture, cellular levels of branched chain amino acids increased dramatically with continuous $H_2S$production, whereas the cysteine and methionine concentrations were noticeably reduced. These results indicate that GSH-dependent perturbation occurs as the result of the promotion of branched chain amino acid synthesis and an attenuation of cysteine and methionine synthesis, both of which activate the generation of $H_2S$. In a low sulfate medium containing 2.5 mM sulfate, the GSH injections did not result in perturbations of dissolved $O_2$ NAD(P)H redox oscillations without burst $H_2S$ production. This suggests that GSH-dependent perturbation is intimately linked with the metabolism of branched-chain amino acids and $H_2S$ generation, rather than with direct GSH-GSSG redox control.

Effect of Orally Administered Branched-chain Amino Acids on Protein Synthesis and Degradation in Rat Skeletal Muscle

  • Yoshizawa, Fumiaki;Nagasawa, Takashi;Sugahara, Kunio
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.1
    • /
    • pp.133-140
    • /
    • 2005
  • Although amino acids are substrates for the synthesis of proteins and nitrogen-containing compounds, it has become more and more clear over the years that these nutrients are also extremely important as regulators of body protein turnover. The branched-chain amino acids (BCAAs) together or simply leucine alone stimulate protein synthesis and inhibit protein breakdown in skeletal muscle. However, it was only recently that the mechanism(s) involved in the regulation of protein turnover by BCAAs has begun to be defined. The acceleration of protein synthesis by these amino acids seems to occur at the level of peptide chain initiation. Oral administration of leucine to food-deprived rats enhances muscle protein synthesis, in part, through activation of the mRNA binding step of translation initiation. Despite our knowledge of the induction of protein synthesis by BCAAs, there are few studies on the suppression of protein degradation. The recent findings that oral administration of leucine rapidly reduced $N^{\tau}$-methylhistidine (3-methylhistidine; MeHis) release from isolated muscle, an index of myofibrillar protein degradation, indicate that leucine suppresses myofiblilar protein degradation. The details of the molecular mechanism by which leucine inhibits proteolysis is just beginning to be elucidated. The purpose of this report was to review the current understanding of how BCAAs act as regulators of protein turnover.

Purification and Properties of Branched Chain Amino Acid Arminotransferase from Fasciola hepatica (간질(Fasciola hepatica)의 Branched Chain 아미노산 Aminotransferase의 정제 및 성상)

  • 이중호;이동욱이의성송철용
    • Parasites, Hosts and Diseases
    • /
    • v.21 no.1
    • /
    • pp.49-57
    • /
    • 1983
  • The distribution and Properties of branched chain amino acid aminotransferase (EC 2.6. 1.42) was investigated in adult Fasciola hepatica. Fascicla hepatica was fractionated by differential centrifugation into nuclear, mitochondrial and cytosolic fractions. The activity of branched chain amino acid aminotransferase was measured by the method of Ichihara and Koyama (1966) . Isozyme patterns of this enzyule was also examined by DEAE-cellulose column chromatography. The results obtained were as follows; 1. The activity in homogenate was found to be 12.69 units/g wet tissue. The activity of this enzyme was relatively high compared with those in rat tissues. 2. The distribution of branched chain amino acid aminotransferase in the subcellular organelles showed that 87.8% of the activity was in cytosolic, 10.9% in mitochondrial and 1.3% was in nuclear fraction. 3. Cytosolic fraction of Fasciola hepatica contained Enzyme I, but not Enzyme II and III, of branched chain amino acid aminotransferase. Ensyme I was eluted by 50mM phosphate buffier from DEAE-cellulose column and catalyzed the transamination of all three branched chain amino acids. 4. The Enzyme I was purified about 22-folds increase in specific activity after chromatography on DEAE-cellulose. 5. The best substrate among three amino acids (leucine, isoleucine and valise) was L-isoleucine. 6. The optimal temperature of Enzyme I was $45^{\circ}C$ and the optimal pH was 8.2. 7. The Km value for leucine of Enzyme I was 4.17 mM. 8. The Km values for a-ketoglutarate and pyridoxal phosphate of Enzyme I were 0.41mM and $4.76{\times}10^{-3}{\;}mM$, respectively.

  • PDF

Maple Syrup Urine Disease : Longterm Diet Therapy and Treatment of Acute Metabolic Decompensation (단풍당뇨증의 식이요법과 급성대상부전의 치료)

  • Lee, Hong-Jin;Bae, Eun-Joo;Park, Won-Il;Lee, Kyung-Ja
    • Journal of The Korean Society of Inherited Metabolic disease
    • /
    • v.3 no.1
    • /
    • pp.4-14
    • /
    • 2003
  • Maple syrup urine disease or branched chain ketoacidurias caused by a deficiency in activity of the branched-chain ${\alpha}$-keto acid dehydrogenase(BCKD) complex. This metabolic block results in the accumulation of the branched-chain amino acids(BCAAs) leucine, isoleucine and valine, and the corresponding branched chain ${\alpha}$-keto acids (BCKAs). Based on the clinical presentation and biochemical responses to thiamine administration, MSUD patients can be divided into five phenotypes : classic, intermediate, intermittent, thiamine responsive and dihydrolipoyl dehydrogenase(E3)-deficient. Classic MSUD has a neonatal onset of encephalopathy, and is the most severe ad most common form. Variant forms of MSUD generally have the initial symptoms by 2 years of age. The majority of untreated classic patients die within the early months of life from recurrent metabolic crisis and neurologic deterioration. Treatment involves both longterm dietary management and aggressive intervention during acute metabolic decompensation. We report here our experience of longterm diet therapy and treatment of acute metabolic decompensation of a case of classic MSUD.

  • PDF

Changes in Blood and Tissue Free Amino Acid Concentrations in Cats Adapted to Low-and High-protein Diets (단백질 섭취 수준에 따른 고양이의 혈액 및 조직의 유리 아미노산 농도의 변화)

  • Park, Tae Sun
    • Journal of Nutrition and Health
    • /
    • v.28 no.10
    • /
    • pp.976-985
    • /
    • 1995
  • Changes in free amino acid concentrations is blood and various tissues were evaluated in cats adapted to the low-protein diet(20% protein, LPD) or the high-protein diet(60% protein, HPD) for 5 weeks. Cumulative body weigth gain for the 5 week period was 463$\pm$43g, and -128$\pm$40g for cats fed HPD and LPD, respectively. Feeding HPD significantly increased the size of liver and kidney. Cats adapted to HPD for 5 weeks have significantly elevated plasma concrntrations of essential amino acids (branched-chain amino acides, threonine, trytophan, phenylalanine and methoionine), whereas plasma levels of non-essential amino acids(alanine, asparagine, glycine, glutamine and serine) were significantly reduced in animals adapted to HPD(p<0.01, or p<0.001) compared to the values for the cats fed LPD. Changes in free amino acid concentratioks in whole blood induced by the variations in dietary level of protein closely reflect the pattern seen in plasma. Amino acids such as branched-chain amino acids, proline and threonine were most difficult to maintain homeostasis and consistantly elevated in lever, kidney, skeletal muscle and brain, as well as in blood of cats adapted to HPD(p<0.01 or p<0.001). All of the free amino acids in jejunum, excluding taurine and ornithine, were significantly elevated in animals adapted to HPD, most probably due to the rapid absorption of large amount of amino acids across the epithelium of small intestine.

  • PDF

Chlorsulfuron-induced Phytotoxicity in Canola(Brassica napus L.) Seedlings (캐놀라 식물체내에서 클로르설푸론의 약해 유발 요인)

  • Kim, Song-Mun;Hur, Jang-Hyun;Han, Dae-Sung;Vanden Born, William H.
    • Korean Journal of Weed Science
    • /
    • v.17 no.2
    • /
    • pp.199-206
    • /
    • 1997
  • Chlorsulfuron, an acetolactate-synthase-inhibiting sulfonylurea herbicide, induces many metabolic and physiological changes in susceptible plants. The objective of this study was to determine to what extent chlorsulfuton-induced phytotoxicity was due to a shortage of final products(the branched-chain amino acids valine, leucine, and isoleucine) or to an accumulation of a toxic metabolite(2-ketobutyrate), or both, in a susceptible species. Chlorsulfuron-treated canola seedlings showed growth inhibition and injury symptoms that included chlorosis, downward leaf rolling, and accumulation of anthocyanins. Supplementation with valine, leucine, and isoleucine prevented the chlorsulfuron-induced growth inhibition and injury symptoms only partially, suggesting that factor(s) other than a shortage of the branched-chain amino acids also are involved in the phytotoxicity. Canola seedlings treated with 2-ketobutyrate showed reduced growth, but they showed different changes in metabolites than seedlings treated with chlorsulfuron. The results suggest that 2-ketobutyrate is not involved in chlorsulfuron-induced phytotoxicity. We conclude that chlorsulfuron-induced phytotoxicity is due at least in part to a shortage of branched-chain amino acids.

  • PDF

Association between dietary branched-chain amino acid intake and skeletal muscle mass index among Korean adults: Interaction with obesity

  • Chae, Minjeong;Park, Hyoung Su;Park, Kyong
    • Nutrition Research and Practice
    • /
    • v.15 no.2
    • /
    • pp.203-212
    • /
    • 2021
  • BACKGROUND/OBJECTIVES: The branched-chain amino acids (BCAA), including isoleucine, leucine, and valine, promote muscle protein synthesis. However, obesity may interfere with protein synthesis by dysregulating mitochondrial function in the muscles. This study aimed to examine the association between dietary intake levels of BCAA and skeletal muscle mass index (SMI) in middle-aged participants, and the effect of obesity/abdominal obesity on this association. SUBJECTS/METHODS: The data of 3,966 men and women aged 50-64 years who participated in the 2008-2011 Korea National Health and Nutrition Examination Survey were analyzed. Intake levels of energy-adjusted dietary amino acids were obtained using a 24-hour dietary recall. SMI was calculated by dividing the appendicular skeletal muscle mass by body weight (kg) and multiplying the result by 100%. Multivariable general linear models were used to analyze the association of dietary BCAA intake levels with SMI. RESULTS: The beneficial effects of energy-adjusted dietary BCAA intakes on SMI were greater in the non-obesity/non-abdominal obesity groups; however, no significant associations were observed in the obesity/abdominal obesity groups (P > 0.05). CONCLUSIONS: Healthy weight and sufficient intake of dietary BCAA are recommended to maintain muscle mass.