• Title/Summary/Keyword: Bulk hetero Junction

Search Result 21, Processing Time 0.026 seconds

Numerical Simulation of Phase Separation in Bulk Hetero-junction Photoactive Layer

  • Hang, Nguyen Thi;Van Thuong, Dinh;Nhat, Hoang Nam;Van Chau, Dinh
    • International Journal of Advanced Culture Technology
    • /
    • v.4 no.1
    • /
    • pp.31-36
    • /
    • 2016
  • Morphology evolution of the active layer in bulk hetero-junction organic photovoltaic is modeled and visualized. The width of the phase domain can be predicted using the relationship of characteristics length and evolution time of the process. The 3D numerical simulation of the PCBM/P3HT blend morphology evolution with respect to time is presented. It is observed that the domain width of composition phase can be predicted by using the relationship between value of characteristic length R(t) and evolution time t.

Time-Variant Characteristics of Organic Thin Film Solar Cell Devices on Plastic Substrates (플라스틱 기판에 제작된 유기박막태양전지의 출력특성 경시변화)

  • No, Im-Jun;Lee, Sunwoo;Shin, Paik-Kyun
    • Journal of the Korean Vacuum Society
    • /
    • v.22 no.4
    • /
    • pp.211-217
    • /
    • 2013
  • Two types of organic thin film solar cell devices with bulk hetero-junction (BHJ) structure were fabricated on plastic substrates using conjugated polymers of $PCDTBT:PC_{71}BM$ and $PTB7:PC_{71}BM$ blended as active channel layer. Time-variant characteristics of the organic thin film solar cell devices were investigated: short circuit current density ($J_{SC}$); open circuit voltage ($V_{OC}$); ; fill factor (FF); power conversion efficiency (PCE, ŋ). All the performance parameters were degraded by progress of the measurement time, while $V_{OC}$ showed the most drastic decrease with time. Possible factors to cause the time-variant alteration of performance parameters were discussed to be clarified.

A Study on the Performance Improvement for Flexible PCDTBT : PC71BM Organic Thin Film Solar Cell by Ozone Surface Treatment of ITO Electrode (ITO 전극의 오존 표면처리에 의한 플렉시블 PCDTBT : PC71BM 유기박막 태양전지의 성능 개선에 관한 연구)

  • No, Im-Jun;Lim, Young-Taek;Shin, Paik-Kyun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.11
    • /
    • pp.104-108
    • /
    • 2012
  • Flexible organic thin film solar cell device with Bulk Hetero-Junction (BHJ) structure was fabricated with blended conjugated polymer of PCDTBT : $PC_{71}BM$ as active layer. Surface of ITO anode for the organic solar cell device was treated with ozone. The organic solar cell device with bare ITO showed short circuit current density ($J_{sc}$) of $8.2mA/cm^2$, open-circuit voltage ($V_{oc}$) of 0.73V, fill factor (FF) of 0.36, and power conversion efficiency (PCE) of 2.16%, respectively. The organic solar cell device with ozone treated ITO anode revealed distinctively improved performance parameters:$J_{sc}$ of $9.8mA/cm^2$, $V_{oc}$ of 0.82V, FF of 0.43, PCE(${\eta}$) of 3.42%.

Studies on Fabrication of Diodes and Photo Cell Using BP-Si structure (BP-Si구조를 이용한 다이오드 및 Photo Cell의 제작에 관한 연구)

  • 홍순관;복은경;김철주
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.25 no.7
    • /
    • pp.774-779
    • /
    • 1988
  • The homo and hetero-junction diodes were fabricated using BP-Si structure. After removal of Si substrates, schottky diodes were fabricated on the BP bulk. The electrical properties of the diode were examined through current-voltage characteristics curve. The schottky diode with Sb electrode has a cut-in voltage of 0.33V. This value is almost equal to that of the typical schottky diodes. The breakdown voltage of the schottky diode is 30V. When BP was used for photo cell as a window, the conversion efficiency improved from 6.5% to 8.3%, and optical transmissivity of BP invreased in short wavelength region.

  • PDF

Enhancement of Short-Circuit Current Density in Solar Cells via Reducing Recombination

  • Kim, Gwan-U;Lee, Gang-Yeong;Mun, Byeong-Jun;Lee, Won-Ho;U, Han-Yeong;Park, Tae-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.484.1-484.1
    • /
    • 2014
  • Bulk hetero junction (BHJ) polymer solar cells (PSCs) are one of the most promising fields as alternative energy source. Especially, the development of new p-type conjugated polymer is one of the main issues to get core technology. In this study, a series of varied ratio of 3,6-carbazole in poly[9-(heptadecan-9-yl)-9H-carbazole-2,7-diyl-alt-(5,6-bis-(octyloxy)-4,7-di(thiophen-2-yl)benzo-[1,2,5]-thia-diazole)-5,5-diyl] were designed and synthesized. These polymers have good solubility and film formability than PCDTBT which is well known promising material. Investigation of the photovoltaic properties of these new polymers indicated that polymer with 2% of 3,6-carbazole provided higher PCE (3.8% to 4.9%) with enhanced JSC, FF, VOC. We found origin of this improvement using several methods, one of which is reduced bimolecular recombination in polymer.

  • PDF

Structural and Electrical Properties of Aluminum Doped ZnO Electrodes Prepared by Atomic Layer Deposition for Application in Organic Solar Cells (유기태양전지 응용을 위한 원자층 증착 방식 제작의 알루미늄이 도핑 된 ZnO의 전기적, 구조적 특징)

  • Seo, Injun;Ryu, Sang Ouk
    • Journal of the Semiconductor & Display Technology
    • /
    • v.13 no.2
    • /
    • pp.1-5
    • /
    • 2014
  • Transparent and conducting aluminum-doped ZnO electrodes were fabricated by atomic layer deposition methods. The electrode showed the lowest resistivity of $5.73{\times}10^{-4}{\Omega}cm$ at a 2.5% cyclic layer deposition ratio of Trimethyl-aluminum and Diethyl-zinc chemicals. The electrodes showed minimum resistivity when deposited at a temperature of $225^{\circ}C$. The electrode also showed optical transmittance of about 92% at 300 nm. An organic solar cell made with a 300-nm-thick aluminum-doped ZnO electrode exhibited 2.0% power conversion efficiency.

3,6-Carbazole Incorporated into Polymer Effects on Solar Cells

  • Lee, Gang-Young;Cha, Hyojung;Park, Chan Eon;Park, Taiho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.481.2-481.2
    • /
    • 2014
  • Bulk hetero junction (BHJ) polymer solar cell (PSCs) is one of the most promising fields as alternative energy source. Especially, the development of new p-type conjugated polymer is one of the main issues to get core technology. In this study, we investigated the chemical doping effects of incorporating 3,6-carbazole units into conjugated polymers based on 2,7-carbazole. We assessed the structural effects of this chemical doping by measuring the photovoltaic device performance of the copolymers with and without annealing. Note that the use of nanostructures in the bulk heterojunction layer could be a major obstacle to commercialization because nano-morphologies are frequently unstable at high temperatures. Therefore, the development of thermally stable polymer:fullerene blends with optimized PCEs is an important goal in this area of research. We studied the morphologies of the copolymers incorporating 3,6-carbazole units resulting from thermal annealing to investigate the effects of the difference between the T g values of the 2,7-carbazole unit and the 3,6-carbazole unit.

  • PDF

Properties of bulk-hetro junction polymer solar cells with P3HT:PCBM active layer (P3HT:PCBM의 고분자 유기박막태양전지의 특성연구)

  • Jang, Seong-Kyu;Choi, Jae-Young;Kim, Kun-Ho;Gong, Su-Cheol;Chang, Ho-Jung
    • Proceedings of the KAIS Fall Conference
    • /
    • 2010.11a
    • /
    • pp.488-490
    • /
    • 2010
  • 최근 심각한 환경오염 문제와 화석 에너지 고갈로 차세대 청정 에너지 개발에 대한 중요성이 증대되고 있다. 그중에서 태양정지는 공해가 적고, 자원이 무한적이며 반 영구적인 수명을 가지고 있어 미래에너지 문제를 해결할 수 있는 에너지원으로 기대되고 있다. 본 연구에서는 P3HT(regioregular poly(3-hexylthiophene))와 PCBM(fullerene derivative [6,6]-phenyl-C61-butyric acid methyl ester)을 전자 도너와 억셉터 물질을 하나의 브랜드로 광 활성층을 형성하는 BHJ(bulk hetero junction)구조를 갖는 고분자 유기 박막 태양전지를 각각 Toluene, Mono-Chlorobenzene, Dichlorobenzene에 $60^{\circ}C$, 200rpm으로 약 12시간동안 1wt%로 교반(Stirring)한 후에 중량비(1:1 wt%)로 혼합하여 스핀코팅(Spin-coating)으로 제작하였고, 완성된 소자의 광활성층 면적은 0.04cm2이며, $150^{\circ}C$에서 후속 열처리 공정을 통해 특성 향상이 측정 되었다. 태양전지 소자 구조는 Glass / ITO / PEDOT:PSS / P3HT : PCBM / Al이다. 전류-전압, FF(Fill Factor), 변환효율 측정을 위해 solar simulator를 AM1.5 조건(100 mW/cm2)으로 이용하였으며, 소자의 최대 전류밀도는 12mA/$cm^2$, 개방전압은 0.566V이고 F.F(Fill Factor)는 55.2%이고 변환효율은 3.7%이다. 후속 열처리후 더욱 좋은 성능을 갖게 되었고, 최대 효율은 Dichl orobenzene일 때 이다.

  • PDF

Performance Characteristics of p-i-n type Organic Thin-film Photovoltaic Cell with Rubrene:CuPc Hole Transport Layer (Rubrene:CuPc 정공 수송층이 도입된 p-i-n형 유기 박막 태양전지의 성능 특성 연구)

  • Kang, Hak-su;Hwang, Jongwon;Kang, Yongsu;Lee, Hyehyun;Choe, Youngson
    • Korean Chemical Engineering Research
    • /
    • v.48 no.5
    • /
    • pp.654-659
    • /
    • 2010
  • We have investigated the effect of rubrene-doped CuPc hole transport layer on the performance of p-i-n type bulk hetero-junction photovoltaic device with a structure of ITO/PEDOT:PSS/CuPc: rubrene/CuPc:C60(blending ratio 1:1)/C60/BCP/Al and have evaluated the current density-voltage(J-V) characteristics, short-circuit current($J_{sc}$), open-circuit voltage($V_{oc}$), fill factor(FF), and energy conversion efficiency(${\eta}_e$) of the device. By rubrene doping into CuPc hole transport layer, absorption intensity in absorption spectra decreased. However, the performance of p-i-n organic type bulk hetero-junction photovoltaic device fabricated with crystalline rubrene-doped CuPc was improved since rubrene shows higher bandgap and hole mobility compared to CuPc. Increased injection currents have effected on the performance improvement of the present device with energy conversion efficiency(${\eta}_e$) of 1.41%, which is still lower value compared to silicone solar cell and many efforts should be made to improve organic photovoltaic devices.

The Post Annealing Effect of Organic Thin Film Solar Cells with P3HT:PCBM Active Layer (P3HT:PCBM 활성층을 갖는 유기 박막태양전지의 후속 열처리 효과)

  • Jang, Seong-Kyu;Gong, Su-Cheol;Chang, Ho-Jung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.17 no.2
    • /
    • pp.63-67
    • /
    • 2010
  • The organic solar cells with Glass/ITO/PEDOT:PSS/P3HT:PCBM/Al structure were fabricated using regioregular poly (3-hexylthiophene) (P3HT) polymer:(6,6)- phenyl $C_{61}$-butyric acid methyl ester (PCBM) fullerene polymer as the bulk hetero-junction layer. The P3HT and PCBM as the electron donor and acceptor materials were spin casted on the indium tin oxide (ITO) coated glass substrates. The optimum mixing concentration ratio of photovoltaic layer was found to be P3HT:PCBM = 4:4 in wt%, indicating that the short circuit current density ($J_{SC}$), open circuit voltage ($V_{OC}$), fill factor (FF) and power conversion efficiency (PCE) values were about 4.7 $mA/cm^2$, 0.48 V, 43.1% and 0.97%, respectively. To investigate the effects of the post annealing treatment, as prepared organic solar cells were post annealed at the treatment time range from 5min to 20min at $150^{\circ}C$. $J_{SC}$ and $V_{OC}$ increased with increasing the post annealing time from 5min to 15min, which may be originated from the improvement of the light absorption coefficient of P3HT and improved ohmic contact between photo voltaic layer and Al electrode. The maximum $J_{SC},\;V_{OC}$, FF and PCE values of organic solar cell, which was post annealed for 15min at $150^{\circ}C$, were found to be about 7.8 $mA/cm^2$, 0.55 V, 47% and 2.0%, respectively.