• Title/Summary/Keyword: CFD Code

Search Result 972, Processing Time 0.029 seconds

Aerodynamic Simulation of Korea next generation high speed train using open source CFD code (오픈 소스 CFD 코드를 이용한 차세대 고속열차 공력 해석)

  • Kim, B.Y.;Gill, J.H.;Kwon, H.B.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.327-330
    • /
    • 2011
  • CFD simulation is widely used in various industries, universities and research centers. In Korea most of the researchers use foreign commercial S/W packages especially in industries. But commercial CFD packages have some problems as limit to source code and very high license foe. So from several years ago open source CFD code has been widely spread as an alternative. But in Korea there are a few users of open source code. Insufficiency of performance validation as for accuracy, robustness, convenience and parallel speed-up is important obstacles of open source code. So we tested some validation cases as to incompressible external aerodynamics and internal flaws and now are doing compressible flaws. As the first stage of compressible flow validation, we simulated Korea next generation high speed train(HEMU). It's running condition is 400km/hr and maximum Mach number reaches up to 0.4. With the high speed train we tested accuracy, robustness and parallel performance of open source CFD code OpenFOAM Because there isn't experimental data we compared results with widely used commercial code. When use $1^{st}$ order upwind scheme aerodynamic forces are very similar to commercial code. But using $2^{nd}$ order upwind scheme there was some discrepancy. The reason of the difference is not clear yet. Mesh manipulation, domain decomposition, post-processing and robustness are satisfactory. Paralle lperformance is similar to commercial code.

  • PDF

Understanding Coal Gasification and Combustion Modeling in General Purpose CFD Code (범용 CFD 코드에서 석탄 가스화 및 연소 모델링에 관한 이해)

  • Lee, Hoo-Kyung;Choi, Sang-Min;Kim, Bong-Keun
    • Journal of the Korean Society of Combustion
    • /
    • v.15 no.3
    • /
    • pp.15-24
    • /
    • 2010
  • The purpose of this study is to assess approaches to modeling coal gasification and combustion in general purpose CFD codes. Coal gasification and combustion involve complex multiphase flows and chemical reactions with strong influences of turbulence and radiation. CFD codes would treat coal particles as a discrete phase and gas species are considered as a continuous phase. An approach to modeling coal reaction in $FLUENT^{(R)}$, selected in this study as a typical commercial CFD code, was evaluated including its devolatilization, gas phase reactions, and char oxidation, turbulence, and radiation submodels. CFD studies in the literature were reviewed to show the uncertainties and limitations of the results. Therefore, the CFD analysis gives useful information, but the results should be carefully interpreted based on understandings on the uncertainties associated with the modelings of coal gasification and combustion.

Design and Performance Analysis of Mixed-Flow Pumps for Waterjet Marine Propulsion (워터제트 선박추진용 사류펌프의 설계 및 성능해석)

  • Yoon, Eui-Soo;Oh, Hyoung-Woo;Ahn, Jong-Woo
    • The KSFM Journal of Fluid Machinery
    • /
    • v.6 no.2 s.19
    • /
    • pp.41-46
    • /
    • 2003
  • The hydraulic design optimization and performance analysis of mixed-flow pumps for waterjet marine vehicle propulsion has been carried out using mean streamline analysis and three-dimensional computational fluid dynamics (CFD) code. In the present study, the conceptual design optimization has been formulated with a non-linear objective function to minimize the fluid dynamic losses, and then the commercial CFD code was incorporated to allow for detailed flow dynamic phenomena in the pump system. Newly designed mixed-flow model pump has been tested in the laboratory. Predicted performance curves by the CFD code agree very well with experimental data for a newly designed mixed-flow pump over the normal operating conditions. The design and prediction method presented herein can be used efficiently as a unified hydraulic design process of mired-flow pumps for waterjet marine vehicle propulsion.

Numerical Study of Turbulent Flow in a Hydrocyclone (하이드로사이클론 내의 난류유동해석)

  • Ju, Jong-Il;Choi, Young-Seok;Lee, Yong-Kab;Kim, Tak-Hyun;Kim, sangyong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.6 no.2 s.19
    • /
    • pp.34-40
    • /
    • 2003
  • Numerical studies have been conducted to predict the solid-liquid separation efficiency of turbulent flow in a hydrocyclone using a commercial CFD code. To validate the CFD code, several preliminary numerical calculations are carried out to determine the influence of parameters such as grid systems, numerical schemes, and turbulence models. The numerical studies have been performed on the hydrocyclones with the different vortex finder geometries by changing the mass flow rate, and the results were compared with the experimental data. The results show that the CFD code can be used as a design tool to improve the performance of hydrocyclones.

Analysis of the performances of the CFD schemes used for coupling computation

  • Chen, Guangliang;Jiang, Hongwei;Kang, Huilun;Ma, Rui;Li, Lei;Yu, Yang;Li, Xiaochang
    • Nuclear Engineering and Technology
    • /
    • v.53 no.7
    • /
    • pp.2162-2173
    • /
    • 2021
  • In this paper, the coupling of fine-mesh computational fluid dynamics (CFD) thermal-hydraulics (TH) code and neutronics code is achieved using the Ansys Fluent User Defined Function (UDF) for code development, including parallel meshing mapping, data computation, and data transfer. Also, some CFD schemes are designed for mesh mapping and data transfer to guarantee physical conservation in the coupling computation. Because there is no rigorous research that gives robust guidance on the various CFD schemes that must be obtained before the fine-mesh coupling computation, this work presents a quantitative analysis of the CFD meshing and mapping schemes to improve the accuracy of the value and location of key physical prediction. Furthermore, the effect of the sub-pin scale coupling computation is also studied. It is observed that even the pin-resolved coupling computation can also create a large deviation in the maximum value and spatial locations, which also proves the significance of the research on mesh mapping and data transfer for CFD code in a coupling computation.

Inlet Shape Design of Air Handling Unit Using Commercial CFD Code (상용 CFD코드를 이용한 공조기 입구 형상 설계)

  • Choi, Young-Seok;Ju, Jong-Il;Lee, Yong-Kab;Joo, Won-Gu
    • The KSFM Journal of Fluid Machinery
    • /
    • v.5 no.3 s.16
    • /
    • pp.54-59
    • /
    • 2002
  • A commercial CFD code is used to compute the 3-D viscous flow field within the inlet flow concentrator of the newly developed AHU (Air Handling Unit). To improve the performance of the AHU, the inlet air needs to be gradually accelerated to the fan's annular velocity without causing turbulence or flow separation. Three major geometric parameters were selected to specify the inlet shape of the AHU. The performance of the AHU could be measured by the inlet and outlet flow uniformity and the total pressure loss through the inlet flow concentrator. Several numerical calculations were carried out to determine the influence of the geometric parameters on the performance of the AHU. The best geometric values were decided to have efficient inlet shape with analyzing CFD calculation results.

Development of Free-surface Decomposition Method and Its ApplicationDevelopment of Free-surface Decomposition Method and Its Application

  • Park, Sunho
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.3 no.2
    • /
    • pp.75-82
    • /
    • 2017
  • With the development of computational fluid dynamics (CFD), studies on shipbuilding and maritime issues including free-surface wave flow have been conducted. Although the volume of fluid (VOF) and level-set methods are widely used to study the free-surface wave flow, disadvantages exist. In particular, it takes a long time to obtain solutions. In this study, a free-surface capturing code is developed for ship and offshore structures. The developed code focuses on accuracy and computation time. Open source CFD libraries, termed OpenFOAM, are used to develop the code. The results obtained using the developed code are compared with those obtained using interFoam. The results show that the developed code could be used to capture the free-surface wave flow without numerical diffusion; moreover, the accuracy of the developed code is largely the same as that of interFoam.

Performance Analysis of the Centrifugal Pump Impeller Using Commercial CFD Code (상용 CFD코드를 이용한 원심펌프 임펠러의 성능해석)

  • Choi, Young-Seok;Lee, Yong-Kab;Hong, Soon-Sam;Kang, Shin-Hyung
    • The KSFM Journal of Fluid Machinery
    • /
    • v.4 no.1 s.10
    • /
    • pp.38-45
    • /
    • 2001
  • A commercial CFD code is used to compute the 3-D viscous flow field within the impeller of a centrifugal pump. Several preliminary numerical calculations are carried out to determine the influence of the parameters such as the grid systems, the numerical schemes, the turbulence models and the shape of the vaneless diffusers at the design flow rate. The results of the preliminary study are used for the calculation of the off-design flow conditions. The circumferentially averaged results such as the radial and tangential velocities, the exit flow angle, the slip factor, the static pressure and the total pressure are compared with the experimental data at the impeller exit to discuss the influence of the prescribed parameters.

  • PDF

Performance Analysis of the Centrifugal Pump Impeller Using Commercial CFD Code (상용 CFD코드를 이용한 원심펌프 임펠러의 성능해석)

  • Choi, Young-Seok;Lee, Yong-Kab;Hong, Soon-Sam;Kang, Shin-Hyung
    • 유체기계공업학회:학술대회논문집
    • /
    • 2000.12a
    • /
    • pp.305-311
    • /
    • 2000
  • A commercial CFD code is used to compute the 3-D viscous flow field within the impeller o( a centrifugal pump. Several preliminary numerical calculations are carried out to determine the influence of the parameters such as the grid systems, the numerical schemes, the turbulence models and the shape of the vaneless diffusers at the design flow rate. The results of the preliminary study are used for the calculation of the off-design flow conditions. The circumferentially averaged results such as the radial and tangential velocities, the exit flow angle, the slip factor, the static pressure and the total pressure are compared with the experimental data at the impeller exit to discuss the influence of the prescribed parameters.

  • PDF