• Title/Summary/Keyword: CLAHE

Search Result 35, Processing Time 0.032 seconds

FPGA implementation using a CLAHE contrast enhancement technique in the termal equipment for real time processing

  • Jung, Jin-Hyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.11
    • /
    • pp.39-47
    • /
    • 2016
  • In this paper, we propose an approach for real time computation of rayleigh CLAHE using a FPGA. The contrast enhancement technique should be applied in thermal equipment having a low contrast image. And thermal equipment must be processed in real time. The CLAHE is an improved algorithm based Histogram Equalization, but the HW design is complex. A value greater than a given threshold in CLAHE should be equally distributed on the other histogram bin, this process requires iterations for the distribution. But implementation of this processing in the FPGA is constrained, so this section was implemented on the assumption of the histogram distribution or modified the operation process or implemented separately in the CPU. In this paper, we designed a distinct redistribution operation in two stages. So FPGA was designed for easy, this was designed to be distributed evenly without the assumptions and constraints. In addition, we have designed a CLAHE with the rayleigh distribution to the FPGA. The simulation shows that the proposed method provides a better image quality in the thermal image.

Robust vehicle Detection in Rainy Situation with Adaboost Using CLAHE (우천 상황에 강인한 CLAHE를 적용한 Adaboost 기반 차량 검출 방법)

  • Kang, Seokjun;Han, Dong Seog
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.12
    • /
    • pp.1978-1984
    • /
    • 2016
  • This paper proposes a robust vehicle detecting method by using Adaboost and CLAHE(Contrast-Limit Adaptive Histogram Equalization). We propose two method to detect vehicle effectively. First, we are able to judge rainy and night by converting RGB value to brightness. Second, we can detect a taillight, designate a ROI(Region Of Interest) by using CLAHE. And then, we choose an Adaboost algorithm by comparing traditional vehicle detecting method such as GMM(Gaussian Mixture Model), Optical flow and Adaboost. In this paper, we use proposed method and get better performance of detecting vehicle. The precision and recall score of proposed method are 0.85 and 0.87. That scores are better than GMM and optical flow.

Evaluation of U-Net Based Learning Models according to Equalization Algorithm in Thyroid Ultrasound Imaging (갑상선 초음파 영상의 평활화 알고리즘에 따른 U-Net 기반 학습 모델 평가)

  • Moo-Jin Jeong;Joo-Young Oh;Hoon-Hee Park;Joo-Young Lee
    • Journal of radiological science and technology
    • /
    • v.47 no.1
    • /
    • pp.29-37
    • /
    • 2024
  • This study aims to evaluate the performance of the U-Net based learning model that may vary depending on the histogram equalization algorithm. The subject of the experiment were 17 radiology students of this college, and 1,727 data sets in which the region of interest was set in the thyroid after acquiring ultrasound image data were used. The training set consisted of 1,383 images, the validation set consisted of 172 and the test data set consisted of 172. The equalization algorithm was divided into Histogram Equalization(HE) and Contrast Limited Adaptive Histogram Equalization(CLAHE), and according to the clip limit, it was divided into CLAHE8-1, CLAHE8-2. CLAHE8-3. Deep Learning was learned through size control, histogram equalization, Z-score normalization, and data augmentation. As a result of the experiment, the Attention U-Net showed the highest performance from CLAHE8-2 to 0.8355, and the U-Net and BSU-Net showed the highest performance from CLAHE8-3 to 0.8303 and 0.8277. In the case of mIoU, the Attention U-Net was 0.7175 in CLAHE8-2, the U-Net was 0.7098 and the BSU-Net was 0.7060 in CLAHE8-3. This study attempted to confirm the effects of U-Net, Attention U-Net, and BSU-Net models when histogram equalization is performed on ultrasound images. The increase in Clip Limit can be expected to increase the ROI match with the prediction mask by clarifying the boundaries, which affects the improvement of the contrast of the thyroid area in deep learning model learning, and consequently affects the performance improvement.

The Clip Limit Decision of Contrast Limited Adaptive Histogram Equalization for X-ray Images using Fuzzy Logic (퍼지를 이용한 X-ray 영상의 대비제한 적응 히스토그램 평활화 한계점 결정)

  • Cho, Hyunji;Kye, Heewon
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.7
    • /
    • pp.806-817
    • /
    • 2015
  • The contrast limited adaptive histogram equalization(CLAHE) is an advanced method for the histogram equalization which is a common contrast enhancement technique. The CLAHE divides the image into sections, and applies the contrast limited histogram equalization for each section. X-ray images can be classified into three areas: skin, bone, and air area. In clinical application, the interest area is limited to the skin or bone area depending on the diagnosis region. The CLAHE could deteriorate X-ray image quality because the CLAHE enhances the area which doesn't need to be enhanced. In this paper, we propose a new method which automatically determines the clip limit of CLAHE's parameter to improve X-ray image quality using fuzzy logic. We introduce fuzzy logic which is possible to determine clip limit proportional to the interest of users. Experimental results show that the proposed method improve images according to the user's preference by focusing on the subject.

A Novel Method of Determining Parameters for Contrast Limited Adaptive Histogram Equalization (대비제한 적응 히스토그램 평활화에서 매개변수 결정방법)

  • Min, Byong-Seok;Cho, Tae-Kyung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.3
    • /
    • pp.1378-1387
    • /
    • 2013
  • Histogram equalization, which stretches the dynamic range of intensity, is the most common method for enhancing the contrast of image. Contrast limited adaptive histogram equalization(CLAHE), proposed by K. Zuierveld, has two key parameters: block size and clip limit. These parameters mainly control image quality, but have been heuristically determined by user. In this paper, we propose a novel method of determining two parameters of CLAHE using entropy of image. The key idea is based on the characteristics of entropy curves: clip limit vs entropy and block size vs entropy. Clip limit and block size are determined at the point with maximum curvature on entropy curve. Experimental results show that the proposed method improves images with very low contrast.

A Robust Road Sign Information Detection Method In Dark and Noisy Scene Using CLAHE (특징 검출이 어려운 환경에서 CLAHE 기반 도로 문자 정보 검출)

  • Kang, Seog June;Han, Dong Seog
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2016.06a
    • /
    • pp.361-363
    • /
    • 2016
  • 현재 차량 내 운전자에게 편의성과 안전성을 제공하는 시스템이 활발히 개발 중이고 향후 ADAS(Advanced Driver Assistance System)와 스마트 자동차에서 영상 정보를 이용한 물체 추적과 분석은 매우 중요한 부분을 차지하고 있다. 영상에서 얻을 수 있는 정보 중 현재 도로의 이정표 정보는 중요한 분석 정보로 사용된다. 하지만 국내 도로표지판 검출 연구의 경우 유럽과 북미와 비교하여 연구 개발이 활발히 진행되고 있지 않다. 국내의 경우 도로 이정표에서 영문자뿐만 아니라 한글 문자 정보까지 포함하고 있어 검출이 쉽지 않다. 또한 비교적 밝고 잡음이 적은 검출하기 좋은 환경에서는 검출이 잘 되지만 명암이 뚜렷하지 않고 잡음이 많은 환경에서는 도로 이정표 문자 검출이 어렵다. 이에 본 논문에서는 CLAHE(Contrast-Limited Adaptive Histogram Equalization) 방법을 적용하여 영상이 어둡고 잡음이 많은 환경에서 국내 도로 이정표의 문자 정보를 얻는다. 실험 결과, 기존 방법에 비해 문자 영역 검출 성능이 향상되었다.

  • PDF

A Performance Comparison of Histogram Equalization Algorithms for Cervical Cancer Classification Model (평활화 알고리즘에 따른 자궁경부 분류 모델의 성능 비교 연구)

  • Kim, Youn Ji;Park, Ye Rang;Kim, Young Jae;Ju, Woong;Nam, Kyehyun;Kim, Kwang Gi
    • Journal of Biomedical Engineering Research
    • /
    • v.42 no.3
    • /
    • pp.80-85
    • /
    • 2021
  • We developed a model to classify the absence of cervical cancer using deep learning from the cervical image to which the histogram equalization algorithm was applied, and to compare the performance of each model. A total of 4259 images were used for this study, of which 1852 images were normal and 2407 were abnormal. And this paper applied Image Sharpening(IS), Histogram Equalization(HE), and Contrast Limited Adaptive Histogram Equalization(CLAHE) to the original image. Peak Signal-to-Noise Ratio(PSNR) and Structural Similarity index for Measuring image quality(SSIM) were used to assess the quality of images objectively. As a result of assessment, IS showed 81.75dB of PSNR and 0.96 of SSIM, showing the best image quality. CLAHE and HE showed the PSNR of 62.67dB and 62.60dB respectively, while SSIM of CLAHE was shown as 0.86, which is closer to 1 than HE of 0.75. Using ResNet-50 model with transfer learning, digital image-processed images are classified into normal and abnormal each. In conclusion, the classification accuracy of each model is as follows. 90.77% for IS, which shows the highest, 90.26% for CLAHE and 87.60% for HE. As this study shows, applying proper digital image processing which is for cervical images to Computer Aided Diagnosis(CAD) can help both screening and diagnosing.

Development of a Verification Tool in Radiation Treatment Setup (방사선치료 시 환자자세 확인을 위한 영상 분석 도구의 개발)

  • 조병철;강세권;한승희;박희철;박석원;오도훈;배훈식
    • Progress in Medical Physics
    • /
    • v.14 no.3
    • /
    • pp.196-202
    • /
    • 2003
  • In 3-dimensional conformal radiation therapy (3D-CRT) and intensity-modulated radiation therapy (IMRT), many studies on reducing setup error have been conducted in order to focus the irradiation on the tumors while sparing normal tissues as much as possible. As one of these efforts, we developed an image enhancement and registration tool for simulators and portal images that analyze setup errors in a quantitative manner. For setup verification, we used simulator (films and EC-L films (Kodak, USA) as portal images. In addition, digital-captured images during simulation, and digitally-reconstructed radiographs (DRR) can be used as reference images in the software, which is coded using IDL5.4 (Research Systems Inc., USA). To improve the poor contrast of portal images, histogram-equalization, and adaptive histogram equalization, CLAHE (contrast limited adaptive histogram equalization) was implemented in the software. For image registration between simulator and portal images, contours drawn on the simulator image were transferred into the portal image, and then aligned onto the same anatomical structures on the portal image. In conclusion, applying CLAHE considerably improved the contrast of portal images and also enabled the analysis of setup errors in a quantitative manner.

  • PDF

Single Image Dehazing Using Linear Transformation of Saturation (채도의 선형 변환을 이용한 단일 영상 안개 제거)

  • Park, Taehee
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.14 no.4
    • /
    • pp.197-205
    • /
    • 2019
  • In this paper, an efficient single dehazing algorithm is proposed based on linear transformation by assuming that a linear relationship exists in saturation component between the haze image and haze-free image. First, we analyze the linearity of saturation channel, estimate the medium transmission map in terms of the saturation component. Then, the intensity of haze-free image is assumed by using CLAHE to enhance contrast of haze image. Experimental results demonstrate that proposed algorithm can naturally recover the image, especially can remove color distortion caused by conventional methods. Therefore, our approach is competitive with other state-of-the art single dehazing methods.

Finger Vein Recognition based on Matching Score-Level Fusion of Gabor Features

  • Lu, Yu;Yoon, Sook;Park, Dong Sun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.2
    • /
    • pp.174-182
    • /
    • 2013
  • Most methods for fusion-based finger vein recognition were to fuse different features or matching scores from more than one trait to improve performance. To overcome the shortcomings of "the curse of dimensionality" and additional running time in feature extraction, in this paper, we propose a finger vein recognition technology based on matching score-level fusion of a single trait. To enhance the quality of finger vein image, the contrast-limited adaptive histogram equalization (CLAHE) method is utilized and it improves the local contrast of normalized image after ROI detection. Gabor features are then extracted from eight channels based on a bank of Gabor filters. Instead of using the features for the recognition directly, we analyze the contributions of Gabor feature from each channel and apply a weighted matching score-level fusion rule to get the final matching score, which will be used for the last recognition. Experimental results demonstrate the CLAHE method is effective to enhance the finger vein image quality and the proposed matching score-level fusion shows better recognition performance.