• Title/Summary/Keyword: CLCN1

검색결과 6건 처리시간 0.027초

An overview of Dent disease

  • Eun Mi Yang;Seong Hwan Chang
    • Childhood Kidney Diseases
    • /
    • 제27권2호
    • /
    • pp.70-75
    • /
    • 2023
  • Dent disease is a rare inherited kidney tubulopathy caused by mutations in either the CLCN5 (Dent disease 1) or OCRL1 (Dent disease 2) genes, and which is often underdiagnosed in practice. A diagnosis is clinically suspected in patients with low-molecular-weight proteinuria, hypercalciuria, and one of the following: hematuria, nephrolithiasis, nephrocalcinosis, hypophosphatemia, or chronic kidney disease. Inheritance is X-linked recessive, meaning, these symptoms are generally only found in males; female carriers may have mild phenotypes. Genetic testing is only a method to confirm the diagnosis, approximately 25% to 35% of patients have neither the CLCN5 nor OCRL1 pathogenic variants (Dent disease 3), making diagnosis more challenging. The genotype-phenotype correlations are not evident with the limited clinical data available. As with many other genetic diseases, the management of patients with Dent disease concentrates on symptom relief rather than any causative process. The current treatments are mainly supportive to reduce hypercalciuria and prevent nephrolithiasis. Chronic kidney disease progresses to end-stage between the ages of the third to fifth decades in 30% to 80% of affected males. In this review, we aimed to summarize the literature on Dent disease and reveal the clinical characteristics and molecular basis of Korean patients with Dent disease.

Electrophysiological characteristics of R47W and A298T mutations in CLC-1 of myotonia congenita patients and evaluation of clinical features

  • Chin, Hyung Jin;Kim, Chan Hyeong;Ha, Kotdaji;Shin, Jin Hong;Kim, Dae-Seong;So, Insuk
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제21권4호
    • /
    • pp.439-447
    • /
    • 2017
  • Myotonia congenita (MC) is a genetic disease that displays impaired relaxation of skeletal muscle and muscle hypertrophy. This disease is mainly caused by mutations of CLCN1 that encodes human skeletal muscle chloride channel (CLC-1). CLC-1 is a voltage gated chloride channel that activates upon depolarizing potentials and play a major role in stabilization of resting membrane potentials in skeletal muscle. In this study, we report 4 unrelated Korean patients diagnosed with myotonia congenita and their clinical features. Sequence analysis of all coding regions of the patients was performed and mutation, R47W and A298T, was commonly identified. The patients commonly displayed transient muscle weakness and only one patient was diagnosed with autosomal dominant type of myotonia congenita. To investigate the pathological role of the mutation, electrophysiological analysis was also performed in HEK 293 cells transiently expressing homo-or heterodimeric mutant channels. The mutant channels displayed reduced chloride current density and altered channel gating. However, the effect of A298T on channel gating was reduced with the presence of R47W in the same allele. This analysis suggests that impaired CLC-1 channel function can cause myotonia congenita and that R47W has a protective effect on A298T in relation to channel gating. Our results provide clinical features of Korean myotonia congenita patients who have the heterozygous mutation and reveal underlying pathophyological consequences of the mutants by taking electrophysiological approach.

Age-dependent expression of ion channel genes in rat

  • Sung-Cherl Jung;Tong Zhou;Eun-A Ko
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제27권1호
    • /
    • pp.85-94
    • /
    • 2023
  • Ion channels regulate a large number of cellular functions and their functional role in many diseases makes them potential therapeutic targets. Given their diverse distribution across multiple organs, the roles of ion channels, particularly in age-associated transcriptomic changes in specific organs, are yet to be fully revealed. Using RNA-seq data, we investigated the rat transcriptomic profiles of ion channel genes across 11 organs/tissues and 4 developmental stages in both sexes of Fischer 344 rats and identify tissue-specific and age-dependent changes in ion channel gene expression. Organ-enriched ion channel genes were identified. In particular, the brain showed higher tissue-specificity of ion channel genes, including Gabrd, Gabra6, Gabrg2, Grin2a, and Grin2b. Notably, age-dependent changes in ion channel gene expression were prominently observed in the thymus, including in Aqp1, Clcn4, Hvcn1, Itpr1, Kcng2, Kcnj11, Kcnn3, and Trpm2. Our comprehensive study of ion channel gene expression will serve as a primary resource for biological studies of aging-related diseases caused by abnormal ion channel functions.

Gene Expression Analysis of Hepatic Response Induced by Gentamicin in Mice

  • Oh, Jung-Hwa;Park, Han-Jin;Hwang, Ji-Yoon;Jeong, Sun-Young;Lim, Jung-Sun;Kim, Yong-Bum;Yoon, Seok-Joo
    • Molecular & Cellular Toxicology
    • /
    • 제3권1호
    • /
    • pp.60-67
    • /
    • 2007
  • Gentamicin is a broad-spectrum aminoglycoside antibiotic used in the treatment of bacterial infection. Although side effects of gentamicin such as nephrotoxicity and ototoxicity have been investigated, the information on the hepatic effects of gentamicin is still limited. In the present study, gene expression profiles were analyzed in the liver of gentamicin treated mice using Affymetrix GeneChip$^{(R)}$ Mouse Expression 430A 2.0 Array. Totally, 400 genes were identified as being either up- or down-regulated over 1.5-fold changes (P<0.01) in the liver of gentamicin treated mice. Among these deregulated genes, 16 up-regulated genes mainly involved in transport (Kif5b, Pex14, Rab14, Clcn3, and Necap1) and 20 down-regulated genes involved in lipid and other metabolisms (Hdlbp, Gm2a, Uroc1, and Dak) were selected using k-means clustering algorithm. The functional classification of differentially expressed genes represented that several stress-related genes were regulated in the liver by gentamicin treatment. This data may contribute in understanding the molecular mechanism in the liver of gentamicin treated mice.

골화석증에 동반된 거대세포바이러스 감염의 1례 (A Case of Cytomegalovirus Infection in a Neonate with Osteopetrosis)

  • 이상현;신정희;최병민;김윤경
    • Pediatric Infection and Vaccine
    • /
    • 제23권1호
    • /
    • pp.72-76
    • /
    • 2016
  • 골화석증은 골격의 경화증이 특징적으로 나타나는 드문 유전 질환으로 뼈 흡수 기전에 손상이 오며 조기 사망하는 질환이다. 반면 거대세포바이러스 감염은 가장 흔한 선천성 감염 중 하나로 빈혈, 혈소판 감소증과 간비장종대, 뇌 석회화 등이 나타날 수 있다. 심한 간비비대, 혈소판 감소증 및 저칼슘혈증과 발달지연으로 내원한 환자에서 두 가지 질환이 함께 있어 항바이러스제 치료 및 대증치료를 시행하였고, 치료 반응이 빠르게 나타나지는 않았으나 지속적인 치료 결과 대부분의 수치가 정상화 되는 것을 확인하였다. 본 증례는 골화석증 신생아에게 동반된 거대세포바이러스 감염의 첫 증례 보고로, 거대세포바이러스 감염에 대한 항바이러스제의 장기 치료로 호전된 사례이다.