• Title/Summary/Keyword: CO2 Rate

Search Result 5,697, Processing Time 0.044 seconds

On-line Measurement and Control of Plant Growth I. Development of $\textrm{CO}_2$ Control Algorithm (작물의 생장정보 계측 및 생육제어에 관한 연구 I. 탄산가스 제어 알고리즘 개발)

  • 진제용;류관희;홍순호
    • Journal of Bio-Environment Control
    • /
    • v.2 no.1
    • /
    • pp.27-36
    • /
    • 1993
  • Carbon dioxide enrichment for greenhouse crops has generally been a standard commercial practice for many years. Vegetable crops such as tomato, cucumber, and lettuce respond positively to the $CO_2$ enrichment. But improper $CO_2$ enrichment leads to physiological damage and economical loss. This study was carried out to develop a $CO_2$ concentration control algorithm considering growth stage and efficiency. The measurand was $CO_2$ consumption rate and top fresh weight that represents growth stage. The weight of top fresh lettuce as a whole in the tray was measured through a non-destructive method. The demand in $CO_2$ concentration according to growth stage was investigated. The results are summarized as follows. 1. The $CO_2$ consumption rate could be measured within the error of $\pm$ 15.4mg$CO_2$/hr in the range of $CO_2$ concentration of 500-1500ppm. 2. The weight of top fresh lettuce could be measured within the error $\pm$ 4.3g in the range of 0-1400g. 3. The $CO_2$ control model developed could determine an economical $CO_2$ supply rate considering $CO_2$ consumption rate and leakage rate. 4. The $CO_2$ control algorithm based on the control model was composed of feedforward control for maintaining a stable $CO_2$ concentration level, and feedback control with $CO_2$ consumption rate and top fresh weight for adapting to the change in $CO_2$ demand by growth stage. 5. For the performance test with the developed control algorithm on lettuce the decrease in $CO_2$ supply rate was obtained without a significant decrease in top fresh weight.

  • PDF

Photosynthesis and Growth Responses of Soybean (Glycine max Merr.) under Elevated CO2 Conditions (대기 중 CO2 상승 조건에서 재배되는 콩의 광합성과 생장 반응의 분석)

  • Oh, Soonja;Koh, Seok Chan
    • Journal of Environmental Science International
    • /
    • v.26 no.5
    • /
    • pp.601-608
    • /
    • 2017
  • The effects of elevated atmospheric $CO_2$ on growth and photosynthesis of soybean (Glycine max Merr.) were investigated to predict its productivity under elevated $CO_2$ levels in the future. Soybean grown for 6 weeks showed significant increase in vegetative growth, based on plant height, leaf characteristics (area, length, and width), and the SPAD-502 chlorophyll meter value (SPAD value) under elevated $CO_2$ conditions ($800{\mu}mol/mol$) compared to ambient $CO_2$ conditions ($400{\mu}mol/mol$). Under elevated $CO_2$ conditions, the photosynthetic rate (A) increased although photosystem II (PS II) photochemical activity ($F_v/F_m$) decreased. The maximum photosynthetic rate ($A_{max}$) was higher under elevated $CO_2$ conditions than under ambient $CO_2$ conditions, whereas the maximum electron transport rate ($J_{max}$) was lower under elevated $CO_2$ conditions compared to ambient $CO_2$ conditions. The optimal temperature for photosynthesis shifted significantly by approximately $3^{\circ}C$ under the elevated $CO_2$ conditions. With the increase in temperature, the photosynthetic rate increased below the optimal temperature (approximately $30^{\circ}C$) and decreased above the optimal temperature, whereas the dark respiration rate ($R_d$) increased continuously regardless of the optimal temperature. The difference in photosynthetic rate between ambient and elevated $CO_2$ conditions was greatest near the optimal temperature. These results indicate that future increases in $CO_2$ will increase productivity by increasing the photosynthetic rate, although it may cause damage to the PS II reaction center as suggested by decreases in $F_v/F_m$, in soybean.

$CO_2$ Production in Fermentation of Dongchimi (Pickled Radish Roots, Watery Radish Kimchi) (동치미의 발효중 $CO_2$ 발생특성)

  • 이동선;이영순
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.26 no.6
    • /
    • pp.1021-1027
    • /
    • 1997
  • $CO_2$production in fermentation of dongchimi was measured and interrelated with changes in pH and titratable acidity. The effects of salt content and temperature on $CO_2$production rate were analysed. Fermentation of dongchimi showed drastic pH decrease in early stage and subsequent levelling off around 3.9, with linearly increased acidity up to 0.3~0.4% optimum quality. $CO_2$production of dongchimi could be analysed to consist of two consecutive stages of constant rate. The first stage $CO_2$production of higher rate moved to the second stage of lower rate when acidity rose beyond 0.3%. When compared to those of 1 and 2% salt content, dongchimi of 3% salt showed lower $CO_2$production rate in the 1st stage and slower acidity change through the whole fermentation period. However, it resulted in the product of highest $CO_2$accumulation at optimal ripeness because of consistent $CO_2$production of longer 1st stage period and relatively high $CO_2$production rate in 2nd stage. $CO_2$production depended on temperature less compared to acidity change(activation energy: 57.3 and 44.3kJ/mol for $CO_2$production of 1st and 2nd stages, respectively; 79.3kJ/mol for acidity change), which means higher ratio of $CO_2$production rate relative to acidity increase at lower temperature. Slower increase in acidity at low temperature also was shown to extend the period of 1st stage $CO_2$production. Therefore, low temperature fermentation was effective in producing the high $CO_2$content dongchimi at adequate acidity, which is desirable organoleptically.

  • PDF

Response of Soybean Growth to Elevated $CO_{2}$ Conditions

  • Kim Young-Guk;Lee Jae-Eun;Kim Sok-Dong;Shin Jin-Chul
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.51 no.4
    • /
    • pp.303-309
    • /
    • 2006
  • The study examined the effects of $CO_2$ enrichment on growth of soybean (Glycine max). Two soybean varieties were used, Taekwang and Cheongja. The plants were grown in growth chambers with a 12-h photoperiod and a day/night temperature of $28/21^{\circ}C$ at the seedling stage and $30/23^{\circ}C$ from the flowering stage. The plants were exposed to the two elevated $CO_2$ levels of 500 and 700 ppm and the ambient level of 350 ppm. Results of the experiment showed that at the second-node trifoliate stage of the two varieties, the elevated $CO_2$ increased plant height, leaf area and dry weight. The elevated $CO_2$ also raised the photosynthetic rate of soybean as compared to the ambient level. From the beginning bloom stage to the full maturity stage of the two varieties, the elevated $CO_2$ increased plant height, leaf area, seed weight and photosynthetic rate. The stomatal conductance and transpiration rate decreased on long days relative to short days of treatment. Through the entire stages, the elevated $CO_2$ increased the water use efficiency of soybean plants because stomatal conductance and transpiration rate decreased at the elevated $CO_2$ levels relative to the ambient level.

Flow and Heat Transfer Characteristics of $CO_2$/Oil Mixtures in a Circular Tube

  • Kang, Byung-Ha;Lim, Dong-Seop
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.16 no.4
    • /
    • pp.117-123
    • /
    • 2008
  • The present study is directed at flow and heat transfer of $CO_2$ and oil mixtures in a circular tube. PAG and POE oils are considered in this study. Flow characteristics of $CO_2$ and oil mixtures have been investigated by flow visualization. Pressure drop has been measured in the range of operating mass flow rate from 0.1 to 0.4 kg/min in a circular tube. Heat transfer characteristics of $CO_2$/oil mixtures have been investigated using a counterflow heat exchanger. In case of pure liquid $CO_2$ as well as $CO_2$ and POE mixtures, flow are seen to be uniform so that $CO_2$ and POE oil are still miscible even at flowing state. However, it is found that $CO_2$ and PAG are not miscible. Pressure drop of $CO_2$/PAG mixtures are much higher than that of $CO_2$/POE mixtures as well as pure $CO_2$ at a fixed mass flow rate. As the concentration of POE oil is increased from 0 to 5 wt%, pressure drop is increased. However, heat transfer rate and heat transfer coefficient of $CO_2$/POE mixtures are much higher than that of $CO_2$/PAG mixtures. The f-factor correlation and Nusselt number correlation for $CO_2$/POE oil mixtures are suggested in this paper.

광합성 미세조류인 Chlorococcum littorale을 이용한 이산화탄소의 생물학적 고정화

  • Kim, Tae-Ho;Sung, Ki-Dong;Lee, Jin-Suck;Lee, Joon-Yeop;Ohh, Sang-Jip;Lee, Hyeon-Yong
    • Microbiology and Biotechnology Letters
    • /
    • v.25 no.3
    • /
    • pp.235-239
    • /
    • 1997
  • Chlorococcum littorale has been grown in high $CO_2$ concentrations to utilize $CO_2$ gas in the polluted air. The effect of incident light intensity on the specific growth rate is expressed by a photoinhibition model, showing half- saturation constant, $K_0\;as\;8\;(W/m^2)$ and inhibition constant, Ki as 35 $(W/m^2)$. The maximum specific growth rate was also estimated as 0.095 (1/day) under this condition. This strain maintained the optimum growth rate in 20% of $CO_2$ gas but 50% of input $CO_2$ gas is the maximum concentration considering the economical efficiency. The maximum Specific $CO_2$ consumption rate, $qCO_2$ was measured as 17.48 (mg $CO_2/g$ dry wt./day) in batch cultivation, 11.2 (mg $CO_2/g$ dry wt./day) in fed-batch cultivation and 10.87 (mg $CO_2/g$ dry wt./day) at 0.065 (1/day) of dilution rate in continuous cultivation. The chemical composition of the biomass obtained from this process showed 32.5% of protein, 27.5% of lipid, 16.5% of carbohydrate and ash 11.7%.

  • PDF

Synthesis of Silicon Carbide Whiskers (I) : Reaction Mechanism and Rate-Controlling Reaction (탄화규소 휘스커의 합성(I) : 반응기구의 율속반응)

  • 최헌진;이준근
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.12
    • /
    • pp.1336-1336
    • /
    • 1998
  • A twt -step carbothermal reduction scheme has been employed for the synthesis of SiC whiskers in an Ar or a H2 atmosphere via vapor-solid two-stage and vapor-liquid-solid growth mechanism respectively. It has been shown that the whisker growth proceed through the following reaction mechanism in an Ar at-mosphere : SiO2(S)+C(s)-SiO(v)+CO(v) SiO(v)3CO(v)=SiC(s)whisker+2CO2(v) 2C(s)+2CO2(v)=4CO(v) the third reaction appears to be the rate-controlling reaction since the overall reaction rates are dominated by the carbon which is participated in this reaction. The whisker growth proceeded through the following reaction mechaism in a H2 atmosphere : SiO2(s)+C(s)=SiO(v)+CO(v) 2C(s)+4H2(v)=2CH4(v) SiO(v)+2CH4(v)=SiC(s)whisker+CO(v)+4H2(v) The first reaction appears to be the rate-controlling reaction since the overall reaction rates are enhanced byincreasing the SiO vapor generation rate.

Photosynthetic and Growth Responses of Chinese Cabbage to Rising Atmospheric CO2 (대기 중 CO2 농도의 상승에 대한 배추의 광합성과 생장 반응)

  • Oh, Soonja;Son, In-Chang;Wi, Seung Hwan;Song, Eun Young;Koh, Seok Chan
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.18 no.4
    • /
    • pp.357-365
    • /
    • 2016
  • The effects of elevated atmospheric $CO_2$ on photosynthesis and growth of Chinese cabbage (Brassica campestris subsp. napus var. pekinensis) were investigated to predict productivity in highland cropping in an environment where $CO_2$ levels are increasing. Vegetative growth, based on fresh weight of the aerial part, and leaf characteristics (number, area, length, and width) of Chinese cabbage grown for 5 weeks, increased significantly under elevated $CO_2$ ($800{\mu}mol{\cdot}mol^{-1}$) compared to ambient $CO_2$ ($400{\mu}mol{\cdot}mol^{-1}$). The photosynthetic rate (A), stomatal conductance ($g_s$), and water use efficiency (WUE) increased, although the transpiration rate (E) decreased, under elevated atmospheric $CO_2$. The photosynthetic light-response parameters, the maximum photosynthetic rate ($A_{max}$) and apparent quantum yield (${\varphi}$), were higher at elevated $CO_2$ than at ambient $CO_2$, while the light compensation point ($Q_{comp}$) was lower at elevated $CO_2$. In particular, the maximum photosynthetic rate ($A_{max}$) was higher at elevated $CO_2$ by 2.2-fold than at ambient $CO_2$. However, the photosynthetic $CO_2$-response parameters such as light respiration rate ($R_p$), maximum Rubisco carboxylation efficiency ($V_{cmax}$), and $CO_2$ compensation point (CCP) were less responsive to elevated $CO_2$ relative to the light-response parameters. The photochemical efficiency parameters ($F_v/F_m$, $F_v/F_o$) of PSII were not significantly affected by elevated $CO_2$, suggesting that elevated atmospheric $CO_2$ will not reduce the photosynthetic efficiency of Chinese cabbage in highland cropping. The optimal temperature for photosynthesis shifted significantly by about $2^{\circ}C$ under elevated $CO_2$. Above the optimal temperature, the photosynthetic rate (A) decreased and the dark respiration rate ($R_d$) increased as the temperature increased. These findings indicate that future increases in $CO_2$ will favor the growth of Chinese cabbage on highland cropping, and its productivity will increase due to the increase in photosynthetic affinity for light rather than $CO_2$.

Neutralization of Synthetic Alkaline Wastewater with CO2 in a Semi-batch Jet Loop Reactor (Semi-batch Jet Loop Reactor에서 연소 배가스중 CO2를 이용한 알칼리 폐수 중화)

  • Son, Min-Ki;Sung, Ho-Jin;Lee, Jea-Keun
    • Journal of the Korean Society of Combustion
    • /
    • v.18 no.2
    • /
    • pp.17-22
    • /
    • 2013
  • In this study, we tested the absorption of $CO_2$ in combustion gas into an alkaline wastewater to simultaneously control $CO_2$ and wastewater. During the experiment, we investigated the effects of operating parameters on neutralization characteristics of the wastewater by using $CO_2$ in a bench-scale semi-batch jet loop reactor (0.1 m diameter and 1.0 m in height). The operating parameters investigated in the study are gas flow rate of 1.0-2.0 L/min, liquid recirculation flow rate of 4-32 L/min, and liquid temperature of $20-25^{\circ}C$. It was shown that the initial pH of wastewater rapidly decreased with increased gas flow rate for a given liquid recirculation flow rate. This was due to the increase in the gas holdup and the interfacial area at higher gas flow rate in the reactor. At constant gas flow rate, the time required to neutralize the wastewater initial pH of 10.1 decreased with liquid recirculation flow rate ($Q_L$), reached a minimum value in the range of $Q_L$ = 16-24 L/min, and then increased with further increase in $Q_L$. Further, the time required to neutralize the wastewater was shortened at higher temperatures.

A Study on the Absorption of $CO_2$Using Alkanolamine Solution (Alkanolamine계 수용액을 이용한 이산화탄소 흡수에 관한 연구)

  • 이성남;송호철;현재휴;박진원
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.17 no.5
    • /
    • pp.407-414
    • /
    • 2001
  • In this study, the absorption kinetics of $CO_2$onto a mixture of AMP (2-amino-2-methyl-1-propanol) MEA (monoethanolamine) water were investigated at 30 and 4$0^{\circ}C$ using a packed absorption tower. Solubility and absorption rate of $CO_2$into alkanolamine solutions and optimal condition of $CO_2$absorption process were investigated. The experimental conditions are as follows; temperature of 30 and 4$0^{\circ}C$, gas flow rate of 3ι/min for the absorption tower, and liquid flow rate of 0.1ι/min. Feed gas was a mixture of 85% $N_2$and 15% $CO_2$. The experimental results showed that AMP had greater solubilities and faster absorption rates than MEA and DEA. In addition, MEA had the fastest initial reaction rate. To improve the properties of AMP which have low initial reaction rate and high cost, AMP was used with MEA. The mixing ratio was also changed in constant total molarity of 1,2,3 and 4. The experimental results can be summarized as follows: (1) in solubility experiment, the addition of MEA in constant total polarity decreased the solubility of $CO_2$in AMP/MEA mixture. (2) from 0 to about 0.3 in mixing ratio, the solubility of $CO_2$in AMP/MEA mixture had little differences compared with the sum of solubility of AMP only and solubility of MEA only . (3) mixing ratio of 0.3 was found to be an optimal point with the fastest $CO_2$absorption rate.

  • PDF