• 제목/요약/키워드: COX-2 activity

검색결과 842건 처리시간 0.026초

Benzothiazine-3-carboxamide 유도체의 합성과 COX-2 저해효과 (Synthesis and COX-2 Inhibitory Activity of Benzothiazine-3-carboxamide Derivatives)

  • 신혜순;최희전;권순경
    • 약학회지
    • /
    • 제46권6호
    • /
    • pp.375-380
    • /
    • 2002
  • In this study, newly designed COX-2 inhibitors, synthetic derivatives of benzothiazine-3-carboxamide, were screened in vitro for selectivity of COX-1 and COX-2 inhibition properties. 7-Bromo-1,2-benzoisothiazine derivatives were obtained from 4-bromotoluene over the chlorosulfonation, amination and oxidation. And benzothiazine ring was synthesized through Gabriel-Colmann rearrangement reaction. To evaluate inhibitory effect of COX-2, synthetic derivatives of benzothiazine-3-carboxamide were tested with accumulation of prostaglandin by lipopolysaccharide in aspirin-treated murine macropharge cell. Some of the synthesized lead compounds have potentially shown the structure-activity relationship for selectivity of COX-2 inhibition activity.

Sophoricoside analogs inhibit COX isozymes but not iNOS and TNF in LPS-stimulated macrophages Raw264.7

  • Kim, Byung-Hak;Min, Kyung-Rak;Kim, Young-Soo
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2002년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.2
    • /
    • pp.320.2-320.2
    • /
    • 2002
  • Macrophages activated by lipopolysaccharide (LPS) are known to induce several proinflammatory proteins including COX-2. iNOS and TNF which produce chemical mediators involved in inflammatory response. Sophoricoside and its analogs (genistin, genistein and orobol) from Sophora japonica (Leguminosae) showed differential inhibitory effects on COX-1 and 2 activities. Sophoricoside and genistin shwoed IC50 values of 4 uM and 6 uM on COX-2 activity and of 1,497 uM and 135 uM on COX-1 activity, respectively. Genistein and orobol showed IC50 values of 3 uM on COX-2 activity and of 28 uM and 18 uM on COX-1 activity. respectively. Therefore. the legume isoflavonoids to be selective COX-2 inhibitors. However. sophoricoside and its analogs did not show inhibitory effects of COX-2, iNos and TNF transcripts. which were identified by the RT-PCR.

  • PDF

Cyclooxygenase-2 저해제로서의 benzothiazine 유도체 합성과 항염작용 평가 (Antiinflammatory Evaluation and Synthesis of Benzothiazine Derivatives as Cyclooxygenase-2 Inhibitor)

  • 신혜순;박명숙;권순경
    • 약학회지
    • /
    • 제44권3호
    • /
    • pp.272-278
    • /
    • 2000
  • The antiinflammatory mechanism of NSAIDs is attributed to the reduction of prostaglandin synthesis by the direct inhibition of cyclooxygenase. Inhibition of prostaglandin production in organs such as stomach and kidney can result in gastric lesions, nephrotoxicity and increased bleeding. In this study, newly designed COX-2 inhibitors, synthesized 1,2-benzothiazine derivatives, were screened in vitro for selectivity of COX-1 and COX-2 inhibition properties. Lead compounds in the structure-activity relationship were studied to synthesize new highly selective COX-2 inhibitors.13 determine inhibitory effect of COX-2, synthesized 1,2-benzothiazine derivatives were screened with accumulation of prostaglandin by lipopolysaccharide (LPS) in aspirin-treated macrophages and murine macropharge cell. Some of synthesized 1,2-benzothiazine derivatives were shown to be effective as selective COX-2 inhibitory activity. Others exhibited a preferential inhibition of COX-2, although some COX-1 inhibitory activity was still present. As a conclusion, simple monomer derivatives were more active than dimer derivatives. Substitution of halogen (Br, C1) on the benzothiazine nucleus slightly enhanced inhibition activity.

  • PDF

COX-2 억제제의 구조-활성 (SAR of COX-2 Inhibitors)

  • 권순경
    • Biomolecules & Therapeutics
    • /
    • 제9권2호
    • /
    • pp.69-78
    • /
    • 2001
  • Cyclooxygenase (COX) is an enzyme, which catalyzes the production of prostaglandins from arachi-donic acid and exists in two isoforms (COX-1 and COX-2). COX-1 is involved in the maintenance of physiological functions such as platelet aggregation, cytoprotection in the stomach and maintenance of normal kidney function. COX-2 is induced significantly in vivo under inflammatory conditions. COX-1 and COX-2 serve different physiological and pathological functions. All commercially available nonsteroidal antiinflammatory drugs (NSAIDS) are inhibitors of both COX-1 and COX-2. Therefore, selective inhibitors of COX-2 may be effective antiinflammatory agents without the ulcerogenic effects associated with current NSAms. Since the mid 1990s, a number of reports have been appeared on the preparation and biological activity of selective COX-2 inhibitors. Recently celecoxib, and rofecoxib, the representative COX-2 inhibitors, are introduced in the drug market. In this paper the relationship of structure-activity for selective COX-2 inhibitors is reviewed.

  • PDF

Synthesis and Biological Activity of Annulated Pyrazoles as Selective COX-2 Inhibitors. I.

  • Kim, Hyun-Hee;Park, Jae-Gyu;Moon, Tae-Chul;Chang, Hyun-Wook;Jahng, Yurng-Dong
    • Archives of Pharmacal Research
    • /
    • 제22권4호
    • /
    • pp.372-379
    • /
    • 1999
  • A series of disubstituted 4,5-polymethylenepyrazoles were synthesized and evaluated their inhibitory activities against COX-2. Some compounds showed strong (0.3 nM) inhibitory activity on COX-2 and were found somewhat selective (up to 16) on COX-2 over COX-1.

  • PDF

Inhibition of COX-2 Activity and Proinflammatory Cytokines($TNF-{\alpha}{\;}and{\;}IL-1{\beta}$) Production by Water-Soluble Sub-Fractionated Parts from Bee (Apis mellifera) Venom

  • Nam, Kung-Woo;Je, Kang-Hoon;Lee, Jang-Hurn;Han, Ho-Je;Lee, Hye-Jung;Kang, Sung-Kil;Mar, Woongchon
    • Archives of Pharmacal Research
    • /
    • 제26권5호
    • /
    • pp.383-388
    • /
    • 2003
  • Bee venom is used as a traditional medicine for treatment of arthritis. The anti-inflammatory activity of the n-hexane, ethyl acetate, and aqueous partitions from bee venom (Apis mellifera) was studied using cyclooxygenase (COX) activity and pro-inflammatory cytokines (TNF-$\alpha and IL-1\beta$) production, in vitro. COX-2 is involved in the production of prostaglandins that mediate pain and support the inflammatory process. The aqueous partition of bee venom showed strong dose-dependent inhibitory effects on COX-2 activity ($IC_{50} = 13.1 \mu$ g/mL), but did not inhibit COX-1 activity. The aqueous partition was subfractionated into three parts by molecular weight differences, namely, B-F1 (above 20 KDa), B-F2 (between 10 KDa and 20 KDa) and BF-3 (below 10 KDa). B-F2 and B-F3 strongly inhibited COX-2 activity and COX-2 mRNA expression in a dose-dependent manner, without revealing cytotoxic effects. TNF-$\alpha and IL-1\beta$ are potent pro-inflammatory cytokines and are early indicators of the inflammatory process. We also investigated the effects of three subfractions on TNF-$\alpha and IL-1\beta$ production using ELISA method. All three subfractions, B-F1, B-F2 and B-F3, inhibited TNF-$\alpha and IL-1\beta$production. These results suggest the pharmacological activities of bee venom on anti-inflammatory process include the inhibition of COX-2 expression and the blocking of pro-inflammatory cytokines (TNF-$\alpha and IL-1\beta$) production.

Inhibitory Effects of Epigallocatechin-3-Gallate on Microsomal Cyclooxygenase-1 Activity in Platelets

  • Lee, Dong-Ha;Kim, Yun-Jung;Kim, Hyun-Hong;Cho, Hyun-Jeong;Ryu, Jin-Hyeob;Rhee, Man Hee;Park, Hwa-Jin
    • Biomolecules & Therapeutics
    • /
    • 제21권1호
    • /
    • pp.54-59
    • /
    • 2013
  • In this study, we investigated the effect of (-)-epigallocatechin-3-gallate (EGCG), a major component of green tea catechins from green tea leaves, on activities of cyclooxygenase (COX)-1 and thromboxane synthase (TXAS), thromboxane $A_2$ ($TXA_2$) production associated microsomal enzymes. EGCG inhibited COX-1 activity to 96.9%, and TXAS activity to 20% in platelet microsomal fraction having cytochrome c reductase (an endoplasmic reticulum marker enzyme) activity and expressing COX-1 (70 kDa) and TXAS (58 kDa) proteins. The inhibitory ratio of COX-1 to TXAS by EGCG was 4.8. These results mean that EGCG has a stronger selectivity in COX-1 inhibition than TXAS inhibition. In special, a nonsteroid anti-inflammatory drug aspirin, a COX-1 inhibitor, inhibited COX-1 activity by 11.3% at the same concentration ($50{\mu}M$) as EGCG that inhibited COX-1 activity to 96.9% as compared with that of control. This suggests that EGCG has a stronger effect than that of aspirin on inhibition of COX-1 activity. Accordingly, we demonstrate that EGCG might be used as a crucial tool for a strong negative regulator of COX-1/$TXA_2$ signaling pathway to inhibit thrombotic disease-associated platelet aggregation.

셀레콕시브 및 그 합성유도체들의 항암활성 스크리닝 (Screening of Anticancer Potential of Celecoxib and its Derivatives)

  • 박정란;강진형;구효정;노지영;류형철;박상욱;고동현;조일환;이주영;황다니엘;김인경
    • Journal of Pharmaceutical Investigation
    • /
    • 제33권2호
    • /
    • pp.105-112
    • /
    • 2003
  • Selective COX (cyclooxygenase)-2 inhibitors including celecoxib have been shown to induce apoptosis and cell cycle changes in various tumor cells. New inhibitors are recently being developed as chemomodulating agents. We evaluated celecoxib and screened 150 synthetic compounds for anti-proliferative activities in vitro. Effects of celecoxib on COX activity, cell growth, cell cycle distribution, and apoptosis induction were determined in A549 COX-2 overexpressing human non-small cell lung cancer (NSCLC) cells. The COX inhibition of celecoxib increased with concentration up to 82% at $1\;{\mu}M$ after 24 hr exposure. Forty ${\mu}M$ and $50\;{\mu}M$ of ce1ecoxib induced $G_1$ arrest, and TUNEL-positive apoptotic cells, respectively. Among 150 compounds, several compounds were selected for having greater COX-2 inhibitory activity and higher selectivity than celecoxib with growth inhibitory activity. Celecoxib showed concentration-dependent COX inhibitory activity, and ability to induce cell cycle arrest and apoptosis in human NSCLC cells in vitro. Among synthetic analogues screened, several compounds showed promising in vitro activity as COX-2 inhibitory anticancer agents, which warrant further evaluation in vitro and in vivo.

The Constituents Isolated from Peucedanum japonicum Thunb. and their Cyclooxygenase (COX) Inhibitory Activity

  • Zheng, Mingshan;Jin, Wenyi;Son, Kun-Ho;Chang, Hyeun-Wook;Kim, Hyun-Pyo;Bae, Ki-Hwan;Kang, Sam-Sik
    • 한국약용작물학회지
    • /
    • 제13권2호
    • /
    • pp.75-79
    • /
    • 2005
  • Five coumarins, psoralen (1), scopoletin (2), isoimperatorin (4), (+)-marmesin (5) and xanthotoxin (6), three chromones, cimifugin (3), hamaudol (7) and sec-O-glucosylhamaudol (10), one sterol, daucosterol (8) and one aliphatic alcohol, galactitol (9) were isolated from the root of Peucedanum japonicum. Their chemical structures were identified by the physicochemical and spectroscopic data by comparing literature values. Among them, compounds 9 and 10 were isolated for the first time from this plant. The anti-inflammatory effects of isolated compounds were examined on cyclooxygenase (COX), compounds 1, 2 and 7 showed inhibitory activity on COX-1 with $IC_{50}$ values of 0.88, 0.27 and 0.30 mM, respectively. In the test for COX-2 activity, only compound 7 showed significant inhibitory activity with the $IC_{50}$ value of 0.57 mM. The other compounds exhibited weak inhibitory or no inhibitory activity.

Inhibition of Inducible Nitric Oxide Synthase and Cyclooxygenase-2 Activity by $1,2,3,4,6-Penta-Ο-galloyl-{\beta}-D-glucose$ in Murine Macrophage Cells

  • Lee, Sung-Jin;Lee, Ik-Soo;Mar, Woong-Chon
    • Archives of Pharmacal Research
    • /
    • 제26권10호
    • /
    • pp.832-839
    • /
    • 2003
  • Activated macrophages express inducible isoforms of nitric oxide synthase (iNOS) and cyclooxygenase (COX-2), and produce excessive amounts of nitric oxide (NO) and prostaglandin E$_2$ (PGE$_2$), which play key roles in the processes of inflammation and carcinogenesis. The root of Paeonia lactiflora Pall., and the root cortex of Paeonia suffruticosa Andr., are important Chinese crude drugs used in many traditional prescriptions. 1,2,3,4,6-penta-O-galloyl-$\beta$-D-glucose (PGG) is a major bioactive constituent of both crude drugs. PGG has been shown to possess potent anti-oxidant, anti-mutagenic, anti-proliferative and anti-invasive effects. In this study, we examined the inhibitory effects of 1,2,3,4,6-penta-O-galloyl-$\beta$-D-glucose (PGG) isolated from the root of Paeonia lactiflora Pall. on the COX-2 and iNOS activity in LPS-activated Raw 264.7 cells, COX-1 in HEL cells. To investigate the structure-activity relationships of gallate and gallic acid for the inhibition of iNOS and COX-2 activity, we also examined (-)-epigallocatechin gallate (EGCG), gallic acid, and gallacetophenone. The results of the present study indicated that PGG, EGCG, and gallacetophenone treatment except gallic acid significantly inhibited LPS-induced NO production in LPS-activated macrophages. All of the four compounds significantly inhibited COX-2 activity in LPS-activated macrophages. Among the four compounds examined, PGG revealed the most potent in both iNOS ($IC_{50}$ = 18 $\mu\textrm{g}/mL$) and COX-2 inhibitory activity (PGE$_2$: $IC_{50}$ = 8 $\mu\textrm{g}/mL$ and PGD$_2$: $IC_{50}$ = 12 $\mu\textrm{g}/mL$), respectively. Although further studies are needed to elucidate the molecular mechanisms and structure-activity relationship by which PGG exerts its inhibitory actions, our results suggest that PGG might be a candidate for developing anti-inflammatory and cancer chemopreventive agents.