• Title/Summary/Keyword: CTGF

Search Result 37, Processing Time 0.028 seconds

The Role of CTGF in Osteosarcoma Progression (골육종에서 CTGF의 발현과 발암기전에서의 역할)

  • Han, Ilkyu;Lee, Mi Ra;Kim, Han-Soo
    • The Journal of the Korean bone and joint tumor society
    • /
    • v.20 no.1
    • /
    • pp.1-6
    • /
    • 2014
  • Purpose: To examine the expression of Connective Tissue Growth Factor (CTGF) in osteosarcoma and to evaluate its role in osteosarcoma invasion and proliferation. Materials and Methods: The mRNA expression of CTGF from 23 patient-derived osteosarcoma cell lines was examined, and the role of CTGF in cell invasion and proliferation was examined using siRNA transfection. Results: The over-expression of CTGF mRNA was observed in 17 cell lines (74%). CTGF-specific siRNA transfection into SaOS-2 and MG63 cell lines resulted in efficient knockdown of CTGF expression on Western blot analysis. siRNA transfected cells showed decreased migration on Matrigel invasion assay and decreased cell proliferation on WST-1 assay. Conclusion: These results indicated that the CTGF expression may play an important role in osteosarcoma progression, and may be a therapeutic target of osteosarcoma.

Local Silencing of Connective Tissue Growth Factor by siRNA/Peptide Improves Dermal Collagen Arrangements

  • Cho Lee, Ae-Ri;Woo, Inhae
    • Tissue Engineering and Regenerative Medicine
    • /
    • v.15 no.6
    • /
    • pp.711-719
    • /
    • 2018
  • BACKGROUND: Collagen organization within tissues has a critical role in wound regeneration. Collagen fibril diameter, arrangements and maturity between connective tissue growth factor (CTGF) small interfering RNA (siRNA) and mismatch scrambled siRNA-treated wound were compared to evaluate the efficacy of CTGF siRNA as a future implement for scar preventive medicine. METHODS: Nanocomplexes of CTGF small interfering RNA (CTGF siRNA) with cell penetrating peptides (KALA and $MPG^{{\Delta}NLS}$) were formulated and their effects on CTGF downregulation, collagen fibril diameter and arrangement were investigated. Various ratios of CTGF siRNA and peptide complexes were prepared and down-regulation were evaluated by immunoblot analysis. Control and CTGF siRNA modified cells-populated collagen lattices were prepared and rates of contraction measured. Collagen organization in rabbit ear 8 mm biopsy punch wound at 1 day to 8 wks post injury time were investigated by transmission electron microscopy and histology was investigated with Olympus System and TS-Auto software. CONCLUSION: CTGF expression was down-regulated to 40% of control by CTGF siRNA/KALA (1:24) complexes (p<0.01) and collagen lattice contraction was inhibited. However, down-regulated of CTGF by CTGF $siRNA/MPG^{{\Delta}NLS}$ complexes was not statistically significant. CTGF KALA-treated wound appeared with well formed-basket weave pattern of collagen fibrils with mean diameter of $128{\pm}22nm$ (n = 821). Mismatch siRNA/KALA-treated wound showed a high frequency of parallel small diameter fibrils (mean $90{\pm}20nm$, n = 563). CONCLUSION: Controlling over-expression of CTGF by peptide-mediated siRNA delivery could improve the collagen orientation and tissue remodeling in full thickness rabbit ear wound.

High Glucose Induces Connective Tissue Growth Factor Expression and Extracellular Matrix Accumulation in Rat Aorta Vascular Smooth Muscle Cells Via Extracellular Signal-Regulated Kinase 1/2

  • Ha, Yu Mi;Lee, Dong Hyup;Kim, Mina;Kang, Young Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.17 no.4
    • /
    • pp.307-314
    • /
    • 2013
  • Connective tissue growth factor (CTGF) is a potent pro-fibrotic factor, which is implicated in fibrosis through extracellular matrix (ECM) induction in diabetic cardiovascular complications. It is an important downstream mediator in the fibrotic action of transforming growth factor ${\beta}$ ($TGF{\beta}$) and is potentially induced by hyperglycemia in human vascular smooth muscle cells (VSMCs). Therefore, the goal of this study is to identify the signaling pathways of CTGF effects on ECM accumulation and cell proliferation in VSMCs under hyperglycemia. We found that high glucose stimulated the levels of CTGF mRNA and protein and followed by VSMC proliferation and ECM components accumulation such as collagen type 1, collagen type 3 and fibronectin. By depleting endogenous CTGF we showed that CTGF is indispensable for the cell proliferation and ECM components accumulation in high glucose-stimulated VSMCs. In addition, pretreatment with the MEK1/2 specific inhibitors, PD98059 or U0126 potently inhibited the CTGF production and ECM components accumulation in high glucose-stimulated VSMCs. Furthermore, knockdown with ERK1/2 MAPK siRNA resulted in significantly down regulated of CTGF production, ECM components accumulation and cell proliferation in high glucose-stimulated VSMCs. Finally, ERK1/2 signaling regulated Egr-1 protein expression and treatment with recombinant CTGF reversed the Egr-1 expression in high glucose-induced VSMCs. It is conceivable that ERK1/2 MAPK signaling pathway plays an important role in regulating CTGF expression and suggests that blockade of CTGF through ERK1/2 MAPK signaling may be beneficial for therapeutic target of diabetic cardiovascular complication such as atherosclerosis.

Influence of Expression Plasmid of Connective Tissue Growth Factor and Tissue Inhibitor of Metalloproteinase-1 shRNA on Hepatic Precancerous Fibrosis in Rats

  • Zhang, Qun;Shu, Fu-li;Jiang, Yu-Feng;Huang, Xin-En
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.16
    • /
    • pp.7205-7210
    • /
    • 2015
  • Background: In this study, influence caused by expression plasmids of connective tissue growth factor (CTGF) and tissue inhibitor of metalloproteinase-1 (TIMP-1) short hairpin RNA (shRNA) on mRNA expression of CTGF,TIMP-1,procol-${\alpha}1$ and PCIII in hepatic tissue with hepatic fibrosis, a precancerous condition, in rats is analyzed. Materials and Methods: To screen and construct shRNA expression plasimid which effectively interferes RNA targets of CTGF and TIMP-1 in rats. 50 cleaning Wistar male rats are allocated randomly at 5 different groups after precancerous fibrosis models and then injection of shRNA expression plasimids. Plasmid psiRNA-GFP-Com (CTGF and TIMP-1 included), psiRNA-GFP-CTGF, psiRNA-GFP-TIMP-1 and psiRNA-DUO-GFPzeo of blank plasmid are injected at group A, B, C and D, respectively, and as model control group that none plasimid is injected at group E. In 2 weeks after last injection, to hepatic tissue at different groups, protein expression of CTGF, TIMP-1, procol-${\alpha}1$ and PC III is tested by immunohistochemical method and,mRNA expression of CTGF,TIMP-1,procol-${\alpha}1$ and PCIII is measured by real-time PCR. One-way ANOVA is used to comparison between-groups. Results: Compared with model group, there is no obvious difference of mRNA expression among CTGF,TIMP-1,procol-${\alpha}1$, PC III and of protein expression among CTGF, TIMP-1, procol-${\alpha}1$, PC III in hepatic tissue at group injected with blank plasmid. Expression quantity of mRNA of CTGF, TIMP-1, procol-${\alpha}1$ and PCIII at group A, B and C decreases, protein expression of CTGF, TIMP-1, procol-${\alpha}1$, PC III in hepatic tissue is lower, where the inhibition of combination RNA interference group (group A) on procol-${\alpha}1$ mRNA transcription and procol-${\alpha}1$ protein expression is superior to that of single interference group (group B and C) (P<0.01 or P<0.05). Conclusions: RNA interference on CTGF and/or TIMP-1 is obviously a inhibiting factor for mRNA and protein expression of CTGF, TIMP-1, procol-${\alpha}1$ and PCIII. Combination RNA interference on genes of CTGF and TIMP-1 is superior to that of single RNA interference, and this could be a contribution for prevention of precancerous condition.

Increased Expression of CTGF in Periodontitis Tissue and Its Role for Enhanced Mature Osteoclast Survival (치주염 조직에서 발현이 증가하는 CTGF에 의한 파골세포 생존 증가)

  • Han, Hye-Yeon;Park, Jong-Cheol;Ryu, Mi Heon;Bae, Moon-Kyoung;Kim, Hyung Joon
    • The Korean Journal of Oral and Maxillofacial Pathology
    • /
    • v.41 no.4
    • /
    • pp.155-162
    • /
    • 2017
  • Connective tissue growth factor (CTGF, CCN2) is one of the multi-functional secreted proteins which belong to CCN family of cysteine-rich growth factors. CTGF is known to have pivotal roles in embryonic endochondral ossification but its role in relevance to periodontitis is never been determined. To identify new molecular mediators associated with periodontitis-induced bone resorption, we have analyzed publicly available GEO database and found the markedly augmented CTGF mRNA expression in periodontitis gingival tissues. The existence of CTGF significantly enhanced mature osteoclasts survival which accompanied by reduction in TUNEL-positive nuclei and PARP cleavage. These results may provide another line of evidence the CTGF mediated prolonged osteoclast survival and subsequent increased bone resorption in the periodontitis patients.

Fluvastatin inhibits advanced glycation end products-induced proliferation, migration, and extracellular matrix accumulation in vascular smooth muscle cells by targeting connective tissue growth factor

  • Hwang, Ae-Rang;Nam, Ju-Ock;Kang, Young Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.22 no.2
    • /
    • pp.193-201
    • /
    • 2018
  • Connective tissue growth factor (CTGF) is a novel fibrotic mediator, which is considered to mediate fibrosis through extracellular matrix (ECM) synthesis in diabetic cardiovascular complications. Statins have significant immunomodulatory effects and reduce vascular injury. We therefore examined whether fluvastatin has anti-fibrotic effects in vascular smooth muscle cells (VSMCs) and elucidated its putative transduction signals. We show that advanced glycation end products (AGEs) stimulated CTGF mRNA and protein expression in a time-dependent manner. AGE-induced CTGF expression was mediated via ERK1/2, JNK, and Egr-1 pathways, but not p38; consequently, cell proliferation and migration and ECM accumulation were regulated by CTGF signaling pathway. AGE-stimulated VSMC proliferation, migration, and ECM accumulation were blocked by fluvastatin. However, the inhibitory effect of fluvastatin was restored by administration of CTGF recombinant protein. AGE-induced VSMC proliferation was dependent on cell cycle arrest, thereby increasing G1/G0 phase. Fluvastatin repressed cell cycle regulatory genes cyclin D1 and Cdk4 and augmented cyclin-dependent kinase inhibitors p27 and p21 in AGE-induced VSMCs. Taken together, fluvastatin suppressed AGE-induced VSMC proliferation, migration, and ECM accumulation by targeting CTGF signaling mechanism. These findings might be evidence for CTGF as a potential therapeutic target in diabetic vasculature complication.

Alteration of Growth Factor Expression after Acute Ischemic Renal Injury (급성 허혈성 신손상 후 여러 성장인자 발현의 변화)

  • Koe, Yang Sim;Lee, Soo Yeon;Kim, Won;Cho, Soo Chul;Hwang, Pyoung Han;Kim, Jung Soo;Lee, Dae-Yeol
    • Clinical and Experimental Pediatrics
    • /
    • v.46 no.7
    • /
    • pp.687-694
    • /
    • 2003
  • Purpose : Regeneration and repair after ischemic renal injury appears to be modulated by circulating or locally produced growth factors. This study examined the changes of serum insulin like growth factor(IGF-I) and renal expression of IGF-I and II, vascular endothelial growth factor(VEGF), transforming growth $factor-{\beta}$($TGF-{\beta}$), and connective tissue growth factor(CTGF) during the active regeneration period after acute ischemic injury. Methods : Sera and kidney tissue samples(whole kidney, cortex, outer medullae and inner medullae) were obtained before and after one, three, five and seven days of 40 minutes bilateral renal pedicle clamping. Acute renal failure was assessed by measuring the concentration of serum creatinine. Serum IGF-I level was measured by radioimmunoassay. The mRNA expression in kidney was measured by RT-PCR. The distribution of IGF-I and CTGF was detected by immunohistochemistry. Resuts : Serum IGF-I concentration after one day following acute ischemic renal injury was significantly decreased compared to preischemic value. The mRNA levels of IGF-I, IGF-II, $TGF-{\beta}1$ and VEGF in whole kidney were temporally decreased on day one of ischemic injury. IGF-I and IGF-II expressions in outer medullae were significantly decreased on day one after ischemic injury. $TGF-{\beta}1$, CTGF and VEGF expressions were markedly decreased in medullae after one day of ischemic injury compared to other kidney sections. IGF-I was markedly decreased in cortical tubules on day one of uremic rat. CTGF was markedly increased on tubule within three days of ischemic injury. Conclusion : These findings suggest that IGFs, $TGF-{\beta}1$ and CTGF may involve in the pathogenesis or the recovery from acute ischemic renal injury.

The Effect of the Transcriptional Regulation of Sp1 for TGF-β1 and CTGF Expression in Scar Formation (반흔형성 과정에서 Sp1 전사인자 조절에 의한 TGF-β1 및 CTGF의 발현)

  • Park, Dong Man;Sohn, Dae Gu;Han, Ki Hwan;Lee, Sun Young;Chae, Young Mi;Chang, Young Chae;Park, Kwan Kyu
    • Archives of Plastic Surgery
    • /
    • v.33 no.1
    • /
    • pp.39-45
    • /
    • 2006
  • This study is to examine the relationship between TGF-b1 expression and CTGF expression, and to evaluate the effect of Sp1 blockade on the expression of TGF-b1, CTGF and extracellular genes, clones of fibroblasts stably transfected with Sp1 decoy ODN. R-Sp1 decoy ODN was highly resistant to degradation by nucleases or serum, compared to the linear or phosphorothioated-Sp1 decoy ODN. Skin wounds were created on the back of 36 anesthetized rats. They were divided into four groups-the rats with normal skin, with wounded skin without decoy, with wounded skin injected with R-Sp1 decoy, and with wounded skin injected with mismatched R-Sp1 decoy, respectively. Skins were collected at 3rd, 5th, 7th, 14th day after wounding. Cellular RNA was extracted by RT-PCR analysis. TGF-${\beta}1$ and CTGF were deeply related with skin fibrosis during scar formation and it appeared that TGF-${\beta}1$ may cause the induction of CTGF expression. R-Sp1 decoy ODN inhibited TGF-${\beta}1$ and CTGF expression both in cultured fibroblasts and in the skin of rats. These results indicate that targeting Sp1 with R-type decoy efficiently blocks extracellular matrix gene expression, and suggest an important new therapeutic approach to control the scarring in normal wound healing and fibrotic disorders.

RT-PCR of Up-Regulated Factors in Abnormally Proliferated Vascular Endothelial Cells by 1, 2-Dimethylhydrazine. (DMH(1,2-Dimethylhydrazine)에 의해 비정상적으로 증식된 혈관 내피세포에서 발현증가 인자들에 대한 RT-PCR의 결과)

  • Kim, Sung-Ho;Kang, Young-Seok;Bae, Yong-Chan;Park, Suk-Young;Nam, Su-Bong
    • Archives of Plastic Surgery
    • /
    • v.32 no.6
    • /
    • pp.689-698
    • /
    • 2005
  • Many studies for verifying angiogenesis have been in progress, especially in the field of abnormal vascular proliferation to explain the pathogenesis and to develop a treatment of several diseases. In our previous experiments, endothelial cell proliferations were induced by DMH stimulation in vitro, and the 177 factors(142 up-regulated and 35 down-regulated factors) were identified. Among the up-regulated factors, 9 substances (EFEMP1, CTGF, CYR61, $ITG{\beta}1$, FHL2, SERPINE1, MYC, PTTG1 and MSH6) were selected, which were related to cell proliferation and showed high signal intensities. The RNA was isolated from HUVECs at the time of 0, 6, 12, 24 hours after the DMH treatment, and RNA of control group HUVECs was also isolated. Genetic information of selected molecules was used to make primer for each, and RT-PCR was performed to analyze both groups. In control and treatment groups, each substance presented variety of manifestation degree according to time differences. EFEMP1, CTGF, CYR61, $ITG{\beta}1$, FHL2 and MYC were related to abnormal vascular proliferation steadily and SERPINE1, PTTG1 and MSH6 were related secondarily. CTGF was related to both normal and abnormal proliferation, but it played a more significant role in abnormal proliferation from earlier stage. EFEMP1, CYR61, $ITG{\beta}1$, FHL2 and MYC were similar to CTGF, although the relation appeared lately. Further study should be performed to analyze the expressions and the interactions of growth factors, which could be utilized in the new therapeutic development.

MicroRNA-26a Regulates RANKL-Induced Osteoclast Formation

  • Kim, Kabsun;Kim, Jung Ha;Kim, Inyoung;Lee, Jongwon;Seong, Semun;Park, Yong-Wook;Kim, Nacksung
    • Molecules and Cells
    • /
    • v.38 no.1
    • /
    • pp.75-80
    • /
    • 2015
  • Osteoclasts are unique cells responsible for the resorption of bone matrix. MicroRNAs (miRNAs) are involved in the regulation of a wide range of physiological processes. Here, we examined the role of miR-26a in RANKL-induced osteoclastogenesis. The expression of miR-26a was upregulated by RANKL at the late stage of osteoclastogenesis. Ectopic expression of an miR-26a mimic in osteoclast precursor cells attenuated osteoclast formation, actin-ring formation, and bone resorption by suppressing the expression of connective tissue growth factor/CCN family 2 (CTGF/CCN2), which can promote osteoclast formation via upregulation of dendritic cell-specific transmembrane protein (DC-STAMP). On the other hand, overexpression of miR-26a inhibitor enhanced RANKL-induced osteoclast formation and function as well as CTGF expression. In addition, the inhibitory effect of miR-26a on osteoclast formation and function was prevented by treatment with recombinant CTGF. Collectively, our results suggest that miR-26a modulates osteoclast formation and function through the regulation of CTGF.