• Title/Summary/Keyword: Cadmium Inhalation Toxicity

Search Result 8, Processing Time 0.019 seconds

Effects of Extracts of Folium Mori on Cadmium Aerosol Inhalation Toxicity in Rats (상엽 추출물이 흰쥐의 카드뮴 에어로졸 흡입독성에 미치는 영향)

  • Park Jae Soo;Jeung Jae Yeal;Lee Taek Jun;Kang Sung Ho;Song Young Sun;Lee Ki Nam
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.16 no.6
    • /
    • pp.1243-1252
    • /
    • 2002
  • To experiment the effects between cadmium inhalation toxicity and extracts of Folium Mori, rat inhalation exposure groups were exposed to cadmium aerosol in air by whole-body inhalation exposure for 6 hours/day, 5 days/week, and 4 weeks. Cadmium concentration in the air of cadmium aerosol was 1.02㎎/㎥ and mass median diameter(MMD) was 1.40μm. Intraperitoneal injection of extracts of Folium Mori to inhalation exposure groups was done for 4 weeks and the results were as follows: The highest body weight gain for 4 weeks and food intake per day were 126.39g/4 weeks and 19.18g/day from inhalation exposure group III, respectively. The highest lung and liver weight were 1.27g and 8.19g from inhalation exposure group II, respectively. The highest kidney weight was 1.805g from inhalation exposure control. The lowest cadmium content in lung was 86.39μg/g from inhalation exposure group III. The lowest cadmium concentration in blood was 7.12㎍/㎗ from inhalation exposure group III. Cadmium concentrations of 40.02㎍/g in liver and 69.18㎍/g in kidney were the lowest from inhalation exposure group I and III, respectively. For weekly cadmium concentration in urine, the value of the fourth week from inhalation exposure group III was the highest, 3.12㎍/㎖. For weekly cadmium concentration in feces, the value of the fourth week from inhalation exposure group III was the highest, 2.67 ㎍/g. The highest metallothionein concentration in lung was 74.65㎍/g from inhalation exposure group III and the highest metallothionein concentration in liver was 386.84㎍/g from inhalation exposure group II. The highest metallothionein concentration in kidney was 236.17 ㎍/g from inhalation exposure group II.

Effects of Ethyl Acetate Extracts of Folium Mori on Cadmium Inhalation Toxicity (상엽 Ethyl Acetate 추출물이 카드뮴의 흡입독성에 미치는 영향)

  • Jeung Jaeyeal;Song Young Sun;Lee Ki Nam
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.17 no.3
    • /
    • pp.700-710
    • /
    • 2003
  • For the experiment of the effects between cadmium aerosol inhalation toxicity and ethyl acetate extracts of Folium Mori, 4 inhalation exposure groups of rat were exposed to cadmium aerosol in air by whole-body inhalation exposure for 6 hours/day, 5 days/week, and 4 weeks. Cadmium concentration in the air was 0.96㎎/㎥ and mass median diameter (MMD) was 2.48㎛ with 1.85 of geometric standard deviation(GSD). Intraperitoneal injections of ethyl acetate extracts of Folium Mori to inhalation exposure groups were performed for 4 weeks and the results were as follows: The highest body weight gain for 4 weeks and food intake per day were 159.29/4 weeks in treated group III and 18.45g/day in treated group I, respectively. The highest lung and liver weights were 1.31 g in treated group I and 9.42g in treated group III, respectively. The highest kidney weight was 2.21g from treated group I. The lowest cadmium content in lung was 86.39㎍/g from treated group III and the lowest cadmium concentration in blood was 2.72㎍/㎗ from treated group II. Cadmium concentrations of 22.09㎍/g in liver and 24.82㎍/g in kidney were the lowest from inhalation exposure group I and III, respectively. For weekly cadmium concentration in urine, the value of the fourth week from treated group III was the highest, 1.35㎍/㎖. For weekly cadmium concentration in feces, the values of the second and fourth week from treated group I were the highest, 1.11㎍/g. The highest metallothionein concentration in lung was 31.85㎍/g from treated group III and the highest metallothionein concentration in liver was 205.77㎍/g from treated group III. The highest metallothionein concentration in kidney was 206.55㎍/g from treated group III. The highest Hct and Hb values were 38.26% and 11.63g/㎗ from treated group III, respectively. The highest RBC and WBC values were 7.68×106/㎣ and 9.85×10³/㎣ from treated group I, respectively.

Development of Biomarkers for Cadmium Toxicity (카드뮴 독성의 생체지표 (유전자 지표))

  • Lee, Mi-Ock
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2003.05a
    • /
    • pp.29-30
    • /
    • 2003
  • The heavy metal cadmium is a xenobiotic toxicant of environmental and occupational concern and it has been classified as a human carcinogen. Inhalation of cadmiumhas been implicated in the development of emphysema and pulmonary fibrosis, but, the detailed mechanism by which cadmium induces adverse biological effects is not yet known.(omitted)

  • PDF

Identification and Characterization of Genes that are Induced after Cadmium Exposure

  • Lee, Mi-Ock
    • Proceedings of the PSK Conference
    • /
    • 2003.10a
    • /
    • pp.73-73
    • /
    • 2003
  • The heavy metal cadmium is a xenobiotic toxicant of environmental and occupational concern and it has been classified as a human carcinogen. Inhalation of cadmium has been implicated in the development of emphysema and pulmonary fibrosis, but, the detailed mechanism by which cadmium induces adverse biological effects is not yet known. Therefore, we undertook the investigation of genes that are induced after cadmium exposure to illustrate the mechanism of cadmium toxicity. (omitted)

  • PDF

Effects of Extract of Radix Achyranthis Bidentatae on Cadmium Inhalation Toxicity in Rats (우슬 추출물이 카드뮴 흡입폭로된 흰쥐의 독성해독에 미치는 영향)

  • Kim Hong Ki;Jeung Jaeyeal;Park Seung Jong;Kang Sung Ho;Song Young Sun;Lee Ki-Nam
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.18 no.2
    • /
    • pp.474-483
    • /
    • 2004
  • To know the effects between Cd inhalation toxicity and extract of Radix Achyranthis Bidentatae, 4 rat groups were exposed to Cd aerosol in air using whole-body inhalation exposure for 6 hours/day, 5 days/week, and 4 weeks. Cd concentration in air was 1.03㎎/㎥ and mass median diameter(MMD) was 1.69㎛. 3 different dose intraperitoneal injections of extract of Radix Achyranthis Bidentatae to 3 inhalation exposure groups was done for 4 weeks and the results were as follows: The highest body weight gain for 4 weeks and food intake per day were from inhalation exposure group I and the highest lung and liver weight were also from inhalation exposure group I. The highest kidney weight was from inhalation exposure group III. The lowest Cd content in lung was 33.49㎍/g from inhalation exposure group I. The lowest Cd concentration in blood was 9.36㎍/㎗ from inhalation exposure control. Cd concentrations of 40.02㎍/g in liver and 69.18㎍/g in kidney were the lowest from inhalation exposure group I and III, respectively. The lowest Cd concentration in liver was 21.08㎍/g from inhalation exposure group III and The lowest Cd concentration in kidney was 15.78㎍/g from inhalation exposure group II. For weekly Cd concentration in urine, the value of the fourth week from inhalation exposure group III was the highest. For weekly Cd concentration in feces, the value of the first week from inhalation exposure group III was the highest. The highest metallothionein concentration in lung was 53.42 ㎍/g from inhalation exposure group III and the highest metallothionein concentration in liver was 188.18㎍/g from inhalation exposure group III. The highest metallothionein concentration in kidney was 143.92㎍/g from inhalation exposure group III. The highest Hct, Hb, and WBC values were from inhalation exposure group II and the highest RBC value was from inhalation exposure group III.

Effects of Water Extracts of Persimmon Leaves to Cadmium Toxicity in Rats by Inhalation Exposure (시엽 추출물이 카드뮴에 흡입폭로된 랫드의 독성에 미치는 영향)

  • Kang Sung Ho;Chun Byung Yeol;Kim Sang Duck;Song Young Son;Lee Ki Nam;Jeung Jae Yeal
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.16 no.1
    • /
    • pp.78-88
    • /
    • 2002
  • Experimental animals were divided into 5 groups; normal, cadmium control, and 3 experimental groups. Cadmium control and experimental groups were exposed to 1 mg/㎥ of cadmium aerosol in air by inhalation exposure for 6 hours/day, 5 days/week during 4 weeks. Dosages of 20, 40, and 80mg/kg of extracts of persimmon leaves were intraperitoneally injected to experimental groups respectively and several toxicological parameters and induction of metallothionein were measured from the rats that inhaled cadmium aerosol in air. The results of this study were as follows. Cadmium concentration that cadmium control and experimental groups were inhaled was 0.980±0.061 mg/㎥. Mass median diameter of cadmium aerosol for inhalation exposure was 4.93±0.483㎛. Cadmium content of normal group in lung was 0.088㎍/g and the highest cadmium content in lung, 55.492㎍/g was from 80mg/kg dose group. Cadmium concentration of normal group in blood was 0.348㎍/100㎖ and the highest cadmium concentration in blood, 2.642㎍/100㎖ was from cadmium control. Cadmium concentration of normal group in liver was 0.010㎍/g and the highest cadmium concentration in liver, 31.100㎍/g was from 20mg/kg dose group. Cadmium concentration of normal group in kidney was 0.030㎍/g and the highest cadmium concentration in kidney, 2.526㎍/g was from cadmium control. Cadmium concentration of normal group in intestine was O.064㎍/g and the highest cadmium concentration in intestine, 0.300㎍/g was from 80mg/kg dose group. The highest cadmium concentration in urine by week was 6.080㎍/day from 20mg/kg dose group in the fouth week and the highest cadmium concentration in feces by week was 341.731㎍/day from 20mg/kg dose group in the fouth week. Metallothionein concentration of normal group in lung was 5.769㎍/g and the highest in lung, 30.986㎍/g was from 80mg/kg dose group. Metallothionein concentration of normal group in liver was 38.856㎍/g and the highest in liver, 169.378㎍/g was from 40mg/kg dose group. Metallothionein concentration of normal group in kidney was 22.228㎍/g and the highest in kidney, 47.898㎍/g was from 80mg/kg dose group. Metallothionein concentration of normal group in intestine was 2.170㎍/g and the highest in intestine, 13.642㎍/g was from 80mg dose group.

Identification of Genes that are Induced after Cadmium Exposure by Suppression Subtractive Hybridization

  • 이미옥
    • Proceedings of the Korea Society of Environmental Toocicology Conference
    • /
    • 2003.05a
    • /
    • pp.107-107
    • /
    • 2003
  • The heavy metal cadmium is a xenobiotic toxicant of environmental and occupational concern and it has been classified as a human carcinogen. Inhalation of cadmium has been implicated in the development of emphysema and pulmonary fibrosis, but, the detailed mechanism by which cadmium induces adverse biological effects is not yet known. Therefore, we undertook the investigation of genes that are induced after cadmium exposure to illustrate the mechanism of cadmium toxicity For this purpose, we employed the polymerase chain reaction-based suppression subtractive hybridization technique. We identified 29 different cadmium-inducible genes in human peripheral mononuclear cells, such as macrophage migration inhibitory factor, lysophosphatidic acid acyltransferase-${\alpha}$, enolase-1${\alpha}$, VEGF, Bax, neuron-derived orphan receptor-1, and Nur77, which are known to be associated with inflammation, cell survival, and apoptosis. Induction of these genes by cadmium treatment was further confirmed by semi-quantitative reverse-transcription polymerase chain reaction. Further, we found that these genes were also induced after cadmium exposure in normal human lung fibroblast cell line, WI-38, suggesting potential use of this induction profile to monitor cadmium toxicity in the lung. Next, Nur77, one of cadmium-inducible genes, was further studied since the products of Nur77 are known to be involved in the apoptotic process of lung cells. Following cadmium treatment, Nur77 gene expression was increased at protein-level in A549 cells. Consistently, the reporter containing Nur77 binding sequence was activated by 2.5-fold after exposure to cadmium in reporter gene analysis by transient transfection experiments. When the plasmid encoding dominant negative Nur77 that represses the transcriptional function of wild-type Nur77 was transfected into A549 cells, the expression of Bax was significantly reduced, suggesting that induction of Nur77 was an important process in cadmium-induced apoptosis in the cells. Cadmium induced the expression of Nur77 in vivo, confirming the relevance of the data obtained in viro. Together our results suggest that Nur77 gene expression in exposure to cadmium leads apoptosis of lung cells which may cause pathological changes in lung.

  • PDF

Effects of Methanol Extract of Radix Achyranthis Bidentatae on Cadmium Inhalation Toxicity in Rat (우슬 메탄올 추출물이 흰쥐의 카드뮴 흡입독성완화에 미치는 영향)

  • Kang Hong Gu;Hong Ji Woo;Han Hyun Jung;Hwang Yoo Yeon;Jeong Jae Yeal;Lee Ki Nam
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.18 no.6
    • /
    • pp.1784-1794
    • /
    • 2004
  • To study the effects between Cd inhalation toxicity and methanol extract of Radix Achyranthis Bidentatae, 4 rat groups were exposed to Cd aerosol by whole-body inhalation exposure for 6 hours/day, 5 days/week, and 4 weeks. Cd concentration in air was 0.98㎎/㎥ and mass median diameter(MMD) was 1.78㎛. 3 different dose intraperitoneal injections of methanol extract of Radix Achyranthis Bidentatae to 3 inhalation exposure groups applied for 4 weeks and the results were as follows: The highest body weight gain for 4 weeks and food intake per day were from inhalation exposure group Ⅲ(p<0.05). The highest lung weight was from inhalation exposure group Ⅲ and the highest liver and kidney weight were from inhalation exposure group Ⅱ(p<0.05). The lowest Cd content in lung was 22.77㎍/g from inhalation exposure group Ⅲ(p<0.05). The highest Cd concentration in blood was 11.71㎍/㎗ from inhalation exposure group Ⅰ(p<0.05). Cd concentrations of 14.87㎍/g in liver and 17.91㎍/g in kidney were the highest from inhalation exposure group Ⅰ(p<0.05). The lowest Cd concentration in liver and kidney were 5.71㎍/g and 3.17㎍/g from the control(p<0.05). For weekly Cd concentration in urine, the highest value was 0.48㎍/㎖ from inhalation exposure group Ⅲ of the 3rd week and inhalation exposure group Ⅰ, Ⅱ of the 4th week. For weekly Cd concentration in feces, the highest value was 0.32㎍/g from inhalation exposure group Ⅰ, Ⅱ, Ⅲ. The highest metallothionein concentration in lung was 89.02㎍/g from inhalation exposure group Ⅲ(p<0.05). The highest metallothionein concentrations in liver and kidney were 265.47㎍/g and 214.21㎍/g from inhalation exposure group Ⅲ, respectively(p<0.05). The highest Hct, Hb, and WBC values were from inhalation exposure group Ⅱ and the highest RBC value was from inhalation exposure group Ⅲ(p<0.05). Mostly damaged part in liver tissue was hepatic lobule and the degrees of damage were lessened by the intraperitoneal injection of methanol extract of Radix Achyranthis Bidentatae. Proximal, distal convoluted tubules and glomerulus in kidney tissue were mostly damaged part. Degeneration and swelling were partially observed but the degrees of kidney tissue damage were lessened more or less by the intraperitoneal injection of methanol extract of Radix Achyranthis Bidentatae.