• Title/Summary/Keyword: Cauchy singular operator

Search Result 3, Processing Time 0.018 seconds

A NUMERICAL METHOD FOR CAUCHY PROBLEM USING SINGULAR VALUE DECOMPOSITION

  • Lee, June-Yub;Yoon, Jeong-Rock
    • Communications of the Korean Mathematical Society
    • /
    • v.16 no.3
    • /
    • pp.487-508
    • /
    • 2001
  • We consider the Cauchy problem for Laplacian. Using the single layer representation, we obtain an equivalent system of boundary integral equations. We show the singular values of the ill-posed Cauchy operator decay exponentially, which means that a small error is exponentially amplified in the solution of the Cauchy problem. We show the decaying rate is dependent on the geometry of he domain, which provides the information on the choice of numerically meaningful modes. We suggest a pseudo-inverse regularization method based on singular value decomposition and present various numerical simulations.

  • PDF

HYPONORMAL SINGULAR INTEGRAL OPERATORS WITH CAUCHY KERNEL ON L2

  • Nakazi, Takahiko
    • Communications of the Korean Mathematical Society
    • /
    • v.33 no.3
    • /
    • pp.787-798
    • /
    • 2018
  • For $1{\leq}p{\leq}{\infty}$, let $H^p$ be the usual Hardy space on the unit circle. When ${\alpha}$ and ${\beta}$ are bounded functions, a singular integral operator $S_{{\alpha},{\beta}}$ is defined as the following: $S_{{\alpha},{\beta}}(f+{\bar{g}})={\alpha}f+{\beta}{\bar{g}}(f{\in}H^p,\;g{\in}zH^p)$. When p = 2, we study the hyponormality of $S_{{\alpha},{\beta}}$ when ${\alpha}$ and ${\beta}$ are some special functions.

APPROXIMATION BY INTERPOLATING POLYNOMIALS IN SMIRNOV-ORLICZ CLASS

  • Akgun Ramazan;Israfilov Daniyal M.
    • Journal of the Korean Mathematical Society
    • /
    • v.43 no.2
    • /
    • pp.413-424
    • /
    • 2006
  • Let $\Gamma$ be a bounded rotation (BR) curve without cusps in the complex plane $\mathbb{C}$ and let G := int $\Gamma$. We prove that the rate of convergence of the interpolating polynomials based on the zeros of the Faber polynomials $F_n\;for\;\bar G$ to the function of the reflexive Smirnov-Orlicz class $E_M (G)$ is equivalent to the best approximating polynomial rate in $E_M (G)$.