• Title/Summary/Keyword: Cdc2

Search Result 310, Processing Time 0.027 seconds

Effects of Cdc31, a component of TREX-2 complex, on growth and mRNA export in fission yeast (분열효모에서 TREX-2 복합체의 구성요소인 Cdc31이 생장과 mRNA export에 미치는 영향)

  • Koh, Eun-Jin;Yoon, Jin Ho
    • Korean Journal of Microbiology
    • /
    • v.52 no.3
    • /
    • pp.383-387
    • /
    • 2016
  • In fission yeast, Schizosaccharomyces pombe, the cdc31 gene encodes a member of the conserved $Ca^{2+}$-binding centrin/CDC31 family, which is a component of spindle pole body. Here, we demonstrate that the S. pombe cdc31p is also a component of TREX-2 complex, which influences mRNA export from the nucleus to the cytoplasm. Repression of the cdc31 gene expression caused growth defect with accumulation of $poly(A)^+$ RNA in the nucleus. On the other hand, over-expression of cdc31 exhibited no defects of both growth and bulk mRNA export, but showed somewhat longer cell morphology. Yeast two-hybrid analysis showed that Cdc31 interacted with Sac3 and Pci2, the subunits of TREX-2 complex. These results suggest that S. pombe Cdc31 is also involved in mRNA export as a component of TREX-2 complex.

Molecular Cloning of the Gene in Schizosaccharomyces pombe Related to the CDC3 Gene in Saccharomyces cerevisiae (Saccharomyces cerevisiae의 CDC3 유전자와 유사한 Schizosaccharomyces pombe 유전자의 클로닝)

  • 김형배
    • Korean Journal of Microbiology
    • /
    • v.31 no.3
    • /
    • pp.197-202
    • /
    • 1993
  • The budding yeast S. cerevisiae contains 10-nm filament ring that lies just inside the plasma memhrane in the region of the mother-bud neck. It is possihle that CDC3. CDCIO, CDCII. CDCI2 genes encode the filaments. Recently it has been shown that the CDC3 and CDCI2 gene products arc localized to [he vicinity of the neck lilaments by immunolluorescence. However. the role of the lilament ring is not clear. In order to find out the role of filament ring. I have tried to clone the similar gene in S. pomhe to the CDC3 in S. cerevisiae. Genomic library was constructed by use of $\lambda$gtll expression vector and screened with CDC3 antibodies. From sequencing data, there were more than two introns in the newly cloned gene. There was 62% homology between the part of the predicted amino acid sequence of cloned gene and CDC3 amino acid sequence.

  • PDF

Cdc2 promotes activation of Schwann cell in regenerating axon after sciatic nerve injury in the rat. (좌골신경섬유 재생시 Cdc2 kinase 매개성 슈반세포 활성화의 역할 규명)

  • Han, In-Sun;Seo, Tae-Beom;Kim, Jong-Oh;NamGung, Uk
    • Journal of Haehwa Medicine
    • /
    • v.14 no.1
    • /
    • pp.201-211
    • /
    • 2005
  • Cdc2 kinase is a prototypical cyclin-dependent kinase critical for G2 to M phase cell cycle transition. Yet, its function in the nervous system is largely unknown. Here, we investigated possible role of Cdc2 in axonal regeneration using sciatic nerve system in rat. Cdc2 protein levels and activity were increased in the injured sciatic nerves 3 and 7 days after crush injury and then decreased to basal level 14 days later. Administration of Cdc2 kinase inhibitor roscovitine in vivo at the time of crush injury significantly inhibited axonal regeneration when regrowing axons were analyzed using retrograde tracers. Cdc2 protein levels in cultured Schwann cells which were prepared from sciatic nerves 7 days after crush injury were much higher compared with those from uninjured sciatic nerves, suggesting that Cdc2 protein expression was primarily induced in the Schwann cells. To further investigate Cdc2 function in Schwann cell, we examined changes in cultured Schwann cell proliferation and migration in culture system. Both the number of proliferating Schwann cells and the extent of neurite outgrowth from co-cultured DRG neurons were significantly decreased by Cdc2 inhibitor roscovitine treatment in DRG culture which was prepared from animals with sciatic nerve injury for 7 days. Also, Schwann cell migration in the injured sciatic nerve explant was significantly inhibited by roscovitine treatment. Taken together, the present data suggest that Cdc2 may be involved in peripheral nerve regeneration via Schwann cell proliferation and migration.

  • PDF

Genes involved in mating processes of saccharomyces cerevisiae (효모의 접합과정에 관여하는 유전자의 연구)

  • 장광엽;박문국;정봉우
    • Korean Journal of Microbiology
    • /
    • v.27 no.3
    • /
    • pp.210-215
    • /
    • 1989
  • In order to elucidate and characterize the signal transduction pathway(s) whereby yeast cells respond to mating pheromone, we have isolated mutants which are able to conjugate in the absence of the alpha-factor receptor. Sixty-one suppressors of a ste2-deletion mutation which also confer a ts conditional "start" arrest phenotypw have been subjected to genetic analysis. The mutants could be assigned to three complementation groups designated CDC70, CDC72 and CDC73, which are unlinked to each other as well as to the previously identified start genes. Quantitation of mating ability of the cdc70, cdc72 and cdc73 mutations in a ste2-deletion background gives levels ranging from 0.1% to 0.3% of wild type, depending on the allele and the gene. The results indicate that the signals from mating pheromone might be mediated by the CDC70, CDC72 and CDC73 products. products.

  • PDF

LIN-23, an E3 Ubiquitin Ligase Component, Is Required for the Repression of CDC-25.2 Activity during Intestinal Development in Caenorhabditis elegans

  • Son, Miseol;Kawasaki, Ichiro;Oh, Bong-Kyeong;Shim, Yhong-Hee
    • Molecules and Cells
    • /
    • v.39 no.11
    • /
    • pp.834-840
    • /
    • 2016
  • Caenorhabditis elegans (C. elegans) utilizes two different cell-cycle modes, binucleations during the L1 larval stage and endoreduplications at four larval moltings, for its postembryonic intestinal development. Previous genetic studies indicated that CDC-25.2 is specifically required for binucleations at the L1 larval stage and is repressed before endoreduplications. Furthermore, LIN-23, the C. elegans ${\beta}$-TrCP ortholog, appears to function as a repressor of CDC-25.2 to prevent excess intestinal divisions. We previously reported that intestinal hyperplasia in lin-23(e1883) mutants was effectively suppressed by the RNAi depletion of cdc-25.2. Nevertheless, LIN-23 targeting CDC-25.2 for ubiquitination as a component of E3 ubiquitin ligase has not yet been tested. In this study, LIN-23 is shown to be the major E3 ubiquitin ligase component, recognizing CDC-25.2 to repress their activities for proper transition of cell-cycle modes during the C. elegans postembryonic intestinal development. In addition, for the first time that LIN-23 physically interacts with both CDC-25.1 and CDC-25.2 and facilitates ubiquitination for timely regulation of their activities during the intestinal development.

The Replication Protein Cdc6 Suppresses Centrosome Over-Duplication in a Manner Independent of Its ATPase Activity

  • Kim, Gwang Su;Lee, Inyoung;Kim, Ji Hun;Hwang, Deog Su
    • Molecules and Cells
    • /
    • v.40 no.12
    • /
    • pp.925-934
    • /
    • 2017
  • The Cdc6 protein is essential for the initiation of chromosomal replication and functions as a licensing factor to maintain chromosome integrity. During the S and G2 phases of the cell cycle, Cdc6 has been found to inhibit the recruitment of pericentriolar material (PCM) proteins to the centrosome and to suppress centrosome over-duplication. In this report, we analyzed the correlation between these two functions of Cdc6 at the centrosome. Cdc6 depletion increased the population of cells showing centrosome over-duplication and premature centrosome separation; Cdc6 expression reversed these changes. Deletion and fusion experiments revealed that the 18 amino acid residues (197-214) of Cdc6, which were fused to the Cdc6-centrosomal localization signal, suppressed centrosome over-duplication and premature centrosome separation. Cdc6 mutant proteins that showed defective ATP binding or hydrolysis did not exhibit a significant difference in suppressing centrosome over-duplication, compared to the wild type protein. In contrast to the Cdc6-mediated inhibition of PCM protein recruitment to the centrosome, the independence of Cdc6 on its ATPase activity for suppressing centrosome over-duplication, along with the difference between the Cdc6 protein regions participating in the two functions, suggested that Cdc6 controls centrosome duplication in a manner independent of its recruitment of PCM proteins to the centrosome.

Expression Patterns of Cell Cycle Related Genes mRNA and Proteins in the Mouse Ovary (세포주기와 관련된 유전자들의 난소 내 mRNA 및 단백질 발현)

  • Park, Chang-Eun;Hong, Sung-No
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.38 no.1
    • /
    • pp.72-81
    • /
    • 2006
  • Wee1 is a kinase regulator of the M-phase promoting factor (MPF; a complex of cdc2 and cyclin B1). The present study was undertaken to determine the role(s) of wee1 in the early stages of mouse ovarian follicles. The expression of wee1 and the correlated cell-cycle components, namely cdc2, cyclin B1, and cdc25C, were evaluated by immunohistochemistry. In addition, the expression of Tyr15-phosphorylated cdc2 (cdc2-p) was also examined to determine whether wee1 kinase phosphorylates cdc2 existed. Each component except cdc25C was found cytoplasmic in the oocytes at all stages of follicles, while cdc25C was not detected in primordial follicles. It was found primarily in ovarian somatic cells and to a small extent in granulosa cells of the growing follicles. To further confirm the expression of cell-cycle components in the primordial follicular oocytes, day1 ovaries were enzymatically and mechanically dissociated, then oocytes were isolated from somatic including pre-granulosa cells, and we confirmed that cdc2-p was expressed in oocytes of primordial follicles. From the results of the present study, we concluded wee1, without the counteracting cdc25C, would cause meiotic arrest of oocytes by the inhibitory phosphorylation of cdc2. The expression of all these proteins in the granulosa cells of growing follicles may regulate their mitosis concurrently with the growth of oocytes and follicles.

  • PDF

Development of the Embedded Java Platform supporting J2ME CDC specification (J2ME CDC 규격의 임베디드 자바플랫폼 개발)

  • 원희선;김영호;김선자
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.10c
    • /
    • pp.103-105
    • /
    • 2004
  • 임베디드 자바플랫폼을 정의하는 J2ME는 컨피규레이션에 따라 크게 CLDC와 CDC로 구분된다. CLDC 자바 플랫폼은 저사양 휴대 단말 등에 탑재되어 널리 상용화되고 있으며, CLDC와 비교하여 CDC 자바 플랫폼은 자바2와 호환 가능한 완전한 JVM이 포함되고 고기능의 폭넓은 자바 API의 지원이 가능하므로 홈서버, 디지털 TV, 텔레매틱스 분야 및 고사양 모바일 단말 등에서 제공될 신규 서비스를 위한 자바 플랫폼으로 지목되고 있다. 본 논문에서는 클린룸으로 구현한 JVM과 GNU 프로젝트인 Classpath를 기반으로 구현한 PP 규격의 클래스 라이브러리를 통합한 CDC 자바 플랫폼 개발에 대해 기술한다.

  • PDF

The Replicon Initiation Burst Released by Reoxygenation of Hypoxic T24 Cells is Accompanied by Changes of MCM2 and Cdc7

  • Martin, Leenus
    • BMB Reports
    • /
    • v.40 no.5
    • /
    • pp.805-813
    • /
    • 2007
  • Although MCM2 is obviously important for the initiation of eukaryotic DNA replication, its role in $O_2$ dependent regulation of replicon initiation is poorly understood. In this report, I analysed the changes of MCM2 during the transition from hypoxically suppressed replicon initiation to the burst of initiation triggered by reoxygenation in T24 cells. A high level of chromatin bound and nucleosolic MCM2 was found under the hypoxic replicon arrest. In contrast low cytosolic MCM2 was noticed. Recovery of $O_2$ induced phosphorylation and diminution of chromatin bound MCM2, whereas cytosolic MCM2 increased. The level of chromatin bound Cdc7 did not change significantly upon reoxygenation. However, after reoxygenation, significant phosphorylation of Cdc7 and an increase of coimmunoprecipitation with its substrate (MCM2) were observed. This provides a hint that reoxygenation may promote the kinase activity of Cdc7. These changes might be the critical factors in $O_2$ dependent regulation of replicon initiation. Moreover, phosphorylation of Cdc7 by Cdk2 can be observed in vitro, but seems to fail to regulate the level of chromatin bound Cdc7 as well as the changes of MCM2 in response to reoxygenation of hypoxically suppressed cells.

ssc-miR-185 targets cell division cycle 42 and promotes the proliferation of intestinal porcine epithelial cell

  • Wang, Wei;Wang, Pengfei;Xie, Kaihui;Luo, Ruirui;Gao, Xiaoli;Yan, Zunqiang;Huang, Xiaoyu;Yang, Qiaoli;Gun, Shuangbao
    • Animal Bioscience
    • /
    • v.34 no.5
    • /
    • pp.801-810
    • /
    • 2021
  • Objective: microRNAs (miRNAs) can play a role in a variety of physiological and pathological processes, and their role is achieved by regulating the expression of target genes. Our previous high-throughput sequencing found that ssc-miR-185 plays an important regulatory role in piglet diarrhea, but its specific target genes and functions in intestinal porcine epithelial cell (IPEC-J2) are still unclear. We intended to verify the target relationship between porcine miR-185 and cell division cycle 42 (CDC42) gene in IPEC-J2 and to explore the effect of miR-185 on the proliferation of IPEC-J2 cells. Methods: The TargetScan, miRDB, and miRanda software were used to predict the target genes of porcine miR-185, and CDC42 was selected as a candidate target gene. The CDC42-3' UTR-wild type (WT) and CDC42-3'UTR-mutant type (MUT) segments were successfully cloned into pmirGLO luciferase vector, and the luciferase activity was detected after co-transfection with miR-185 mimics and pmirGLO-CDC42-3'UTR. The expression level of CDC42 was analyzed using quantitative polymerase chain reaction and Western blot. The proliferation of IPEC-J2 was detected using cell counting kit-8 (CCK-8), methylthiazolyldiphenyl-tetrazolium bromide (MTT), and 5-ethynyl-2'-deoxyuridine (EdU) assays. Results: Double enzyme digestion and sequencing confirmed that CDC42-3'UTR-WT and CDC42-3'UTR-MUT were successfully cloned into pmirGLO luciferase reporter vector, and the luciferase activity was significantly reduced after co-transfection with miR-185 mimics and CDC42-3'UTR-WT. Further we found that the mRNA and protein expression level of CDC42 were down-regulated after transfection with miR-185 mimics, while the opposite trend was observed after transfection with miR-185 inhibitor (p<0.01). In addition, the CCK-8, MTT, and EdU results demonstrated that miR-185 promotes IPEC-J2 cells proliferation by targeting CDC42. Conclusion: These findings indicate that porcine miR-185 can directly target CDC42 and promote the proliferation of IPEC-J2 cells. However, the detailed regulatory mechanism of miR-185/CDC42 axis in piglets' resistance to diarrhea is yet to be elucidated in further investigation.