• Title/Summary/Keyword: Cell Detachment

Search Result 65, Processing Time 0.031 seconds

Effects of Citrus Reticulata on the Cell Detachment and Apoptosis in Human Gastric Cancer SNU-668 Cells

  • Kim, Jeung-Beum;Kim, Min-Su;Kim, Ee-Hwa;Kim, Sung-Hoon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.19 no.1
    • /
    • pp.212-217
    • /
    • 2005
  • The purpose of this study was to examine the effects of Citrus Reticulata(CR) on the Cell Detachment and Apoptosis in Human Gastric Cancer SNU-668 Cells. The effect of CR on apoptosis was investigated through MTT assay, DAPI staining, and TUNEL assay. We also performed RT-PCR for apoptotic genes including BCL-2, BAX, and caspase-3, the caspase-3 activity assay, and western blotting for pro-CASP-3. Then, to detect that adhesion of cell to ECM was reduced by CR, we investigated mRNA expression of CDH1 and PTK2 using RT-PCR, and their protein expressions using western blotting, and immunocytochemistry in SNU-668 cells. In this study, the results showed that treatment of CR induced time and dose-dependent cell death in SNU-668 cells. Downregulated mRNA expression of BCL-2, and upregulated mRNA expressions of BAX and CASP-3 indicated that the cell death was due to apoptosis. Protein expression of inactivated CASP-3, and caspase-3 activity assay also showed that apoptosis was induced in CR-treated cells.

Adhesion Strength Measurement of Rabbit Knee Chondrocyte (연골세포 부착력 평가)

  • Lee Kwon-Yong;Park Sang-Guk;Shin Daehwan;Park Jong-Chul
    • Tribology and Lubricants
    • /
    • v.21 no.5
    • /
    • pp.236-240
    • /
    • 2005
  • In order to prepare for the suitable surfaces of implants or medical devices, quantitative evaluation of adhesion between cells and biomaterials is essential. To better understand adhesion formation between cells and biomaterials, we used the cytodetachment technique which measures the adhesive force of a single cell through changing the, culture time and detachment speed. The results showed that the adhesive force could be affected by the culture time of cells on the surface of materials and the detachment speed. Moreover, there was a large discrepancy among the adhesion strength measured by similar techniques conducted on the different cells and substrates. It can be 'concluded that the variation of the force measurement technique can seriously alter the level of the force required to detach a cell on the surface of materials.

Effects of Ginsenosides $Rg_3$ and $Rh_2$ OH the Proliferation of Prostate Cancer Cells

  • Kim Hyun-Sook;Lee Eun-Hee;Ko Sung-Ryong;Choi Kang-Ju;Park Jong-Hee;Im Dong-Soon
    • Archives of Pharmacal Research
    • /
    • v.27 no.4
    • /
    • pp.429-435
    • /
    • 2004
  • Ginseng has an anti-cancer effect in several cancer models. This study was to characterize active constituents of ginseng and their effects on proliferation of prostate cancer cell lines, LNCaP and PC3. Cell proliferation was measured by $[^3H]$thymidine incorporation, the intracellular calcium concentration by a dual-wavelength spectrophotometer system, effects on mite-gen-activated protein (MAP) kinases by Western blotting, and cell attachment and morphologic changes were observed under a microscope. Among 11 ginsenosides tested, ginsenosides $Rg_3\;and\;Rh_2$ inhibited the proliferation of prostate cancer cells. $EC_{50}s\;of\;Rg_3\;and\;Rh_2$ on PC3 cells were $8.4{\mu}M\;and\;5.5{\mu}M$, respectively, and $14.1{\mu}M\;and\;4.4{\mu}M$ on LNCaP cells, respectively. Both ginsenosides induced cell detachment and modulated three modules of MAP kinases activities differently in LNCaP and PC3 cells. These results suggest that ginsenosides $Rg_3\;and\;Rh_2$-induced cell detachment and inhibition of the proliferation of prostate cancer cells may be associated with modulation of three modules of MAP kinases.

Effects of the Chestnut Inner Shell Extract on the Expression of Adhesion Molecules, Fibronectin and Vitronectin, of Skin Fibroblasts in Culture

  • Chi, Yeon-Sook;Heo, Moon-Young;Chung, Ji-Hun;Jo, Byoung-Kee;Kim, Hyun-Pyo
    • Archives of Pharmacal Research
    • /
    • v.25 no.4
    • /
    • pp.469-474
    • /
    • 2002
  • The inner shell of the chestnut (Castanea crenata S. et Z., Fagaceae) has been used as an anti-wrinkle/skin firming agent in East Asia, and preliminary experiments have found that a 70% ethanol extract from this plant material can prevent cell detachment of skin fibroblasts from culture plates. In order to examine the molecular mechanisms underlying this phenomenon, its effects on the expression of adhesion molecules, such as fibronectin and vitronectin, were investigated using the mouse skin fibroblast cell line, NIH/3T3. Using fixed-cell ELISA, Western blotting and immunofluorescence cell staining, it was clearly demonstrated that the chestnut inner shell extract enhanced the expression of the cell-associated fibronectin and vitronectin. Scoparone (6,7-dimethoxycoumarin), isolated from the extract, also possessed similar properties. These findings suggest that the enhanced expression of the adhesion molecules may be one of the molecular mechanisms for how the chestnut inner shell extract preventing cell detachment and may be also responsible for its anti-wrinkle/skin firming effect.

Adhesion Strength Measurement of Chondrocyte (연골세포 부착력 평가)

  • Lee K. Y.;Park S. K.;Shin Deahwan;Park J. C.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.362-366
    • /
    • 2004
  • Quantitative evaluation of substrates for cells is essential to understanding cell-material adhesive interaction and it is also necessary for the development of new biomaterials. Many cells on adhesive molecules will form an organization of actin into bundles and production of the large, highly organized structures termed focal adhesions. To better understand adhesion formations between cells and substrata, we have quantified the force required to displace attached cell. we allowed rabbit knee chondrocyte to attach on a substratum of microscope slide glass. Our results demonstrate that a force is required to detach cells is changed according to detachment time variation.

  • PDF

Effect of Fermented Platycodon grandiflorum Extract on Cell Proliferation and Migration in Bovine Aortic Endothelial Cells (혈관내피세포의 성장 및 세포 이동에 영향을 미치는 발효도라지추출물의 효과)

  • Choi, Woosoung;Song, Jina;Park, Mi-Hyeon;Yu, Heui Jong;Park, Heonyong
    • Journal of Life Science
    • /
    • v.26 no.1
    • /
    • pp.59-67
    • /
    • 2016
  • Platycodon grandiflorum A. De Candolle (Korean name, ‘Doraji’) is a perennial plant containing various triterpenoid saponins. The roots of this plant have traditionally been used as a food material in Korea. Here, we prepared a fermented P. grandiflorum extract (PG). Although it was previously reported that P. grandiflorum A. extract has a variety of physiological functionalities, including anti-inflammatory and anti-oxidant activities, little is known about its vascular functions. In this study, we executed a series of experiments to identify the effect of PG on endothelial cells. PG at a high concentration (100 μg/ml) was found to induce cell detachment, whereas PG at a low concentration (0.1 μg/ml) appeared to promote cell proliferation and migration in bovine aortic endothelial cells. The cell detachment induced by the high concentration was not associated with cell death, such as apoptosis, necrosis, and autophagy. In addition, we found that PG at the high concentration formed a small vesicular structure called an endothelial microparticle (EMP). The EMP was prepared by centrifugal fractionation and determined with flow cytometry and a microscope. Interestingly, PG-induced cell detachment was found to be mediated by EMP. We furthermore determined that PG at the low concentration activated Akt, a crucial cell-signaling molecule, and then controlled cell proliferation and migration. Overall, our findings suggest that PG at low doses maintains vascular stability by promoting endothelial cell proliferation, and enhances the efficacy of wound healing by cell proliferation and migration activity.

The Effect of Superoxide Anion Production by PMN on Pneumocyte Injury in Patients with Bronchial Asthma (기관지천식환자에서 다형핵구의 과산화 음이온 생성능이 폐포세포 손상에 미치는 영향)

  • Kim, Young-Kyoon;Park, Sung-Hak
    • Tuberculosis and Respiratory Diseases
    • /
    • v.40 no.3
    • /
    • pp.213-222
    • /
    • 1993
  • Background : Bronchial asthma has been known as an inflmmatory disease. There have been many evidences that polymorphonuclear leukocytes (PMN) might play an important role in the pathogrnesis of asthma. Although many investigators suggested that pneumocyte injury by PMN-derived oxygen radicals may contribute to the pathogenesis of asthma, there has been few report for a direct evidence of oxygen radicals-mediated pneumocyte injury in bronchial asthma. Furthermore the exact mechanism of oxygen radicals-mediated pneumocyte injury is still controversy. This study was designed to establish a direct in vitro evidence and its clinical significance of pneumocyte injury by PMN-derived superoxide anion in bronchial asthma and to elucidate the main mechanism of superoxide anion-mediated pneumocyte injury. Methods : 12 stable asthmatics and 5 healthy volunteers were participated in this study. PMN was separated from peripheral venous blood samples by using dextran sedimentation and Ficoll-Hypaque density gradient separation method. Superoxide anion productions by PMN and plasma SOD activities were measured by spectrophotometric assay using the principle of SOD inhibitable cytochrome c reduction. PMN-mediated pneumocyte injuries were measured by $^{51}Cr$-release assay using A549 pneumocytes and were expressed as percent lysis and percent detachment. Results: 1) PMN from asthmatics produced more amount of superoxide anion compared to PMN from normal subjects ($6.65{\pm}0.58$ vs $2.81{\pm}0.95\;nmol/1{\times}10^6$ cells, p<0.05), and showed an inverse correlation with $FEV_1$(R=-0.63, p<0.05), but no correlation with $PC_{20}$ histamine in asthmatics. 2) Plasma SOD activities were decreased in asthmatics compared to normal subjects but not significant, and showed a positive correlation with $FEV_1$(R=0.63, p<0.05) but no correlation with $PC_{20}$ histamine in asthmatics. 3) There were a positive correlation between plasma SOD activity and superoxide anion production by PMN in normal subjects (R=0.88, p<0.05) but not in asthmatics. 4) PMN-mediated pneumocyte injury was predominantly expressed as cell detachment rather than cell lysis in both groups, and PMN from asthmatics showed more potent cytotoxic effect on A549 pneumocytes compated to PMN from normal subjects. PMN-mediated detachment rather than lysis of A549 pneumocytes was significantly inhibited by in vitro SOD but not by diluted serum. 5) PMN-mediated detachment rather than lysis of A549 pneumocytes showed a good correlation with superoxide anion production by PMN (R=0.90 in normal subjects, R=0.82 in asthmatics, p<0.05) but no correlation with plasma SOD activity. PMN-mediated pneumocyte injuries were not correlated with $FEV_1$ or $PC_{20}$ histamine in asthmatics. 6) There were no significant differences in PMN-mediated pneumocyte injuries between allergic and nonallergic asthmatics. Conclusion : Our results suggest that pneumocyte injury by PMN-derived superoxide anion may partially contribute to the pathogenesis of asthma and that cell detachment rather than cell lysis may be the mechanism of superoxide anion-mediated pneumocyte injury.

  • PDF

Pathological Effect of Melatonin on Vascular Endothelial Cell Detachment (혈관내피세포 탈착에 미치는 melatonin의 병리학적 영향)

  • Seo, Jeong-Hwa;Kim, Sung-Hyen;Ahn, Sun-Young;Jeong, Eun-Sil;Cho, Jin-Gu;Park, Heon-Yong
    • Journal of Life Science
    • /
    • v.20 no.6
    • /
    • pp.914-921
    • /
    • 2010
  • In this study, we carried out a series of experiments to know whether melatonin, an anti-oxidative and immunosuppressive agent, played an important role in endothelial cells. It was revealed that melatonin had little or no effect on endothelial proliferation, cell death or migration. Additionally, melatonin had no effect on adhesion of THP-1 leukocytes to bovine aortic endothelial cells (BAECs) and THP-1 homotypic cell aggregation. In contrast, it was shown that melatonin diminished the basal level of nitric oxide by PP2A-mediated dephosphorylation of endothelial nitric oxide synthase (eNOS), leading to enhanced detachment of BAEC from the extracellular matrix. Collectively, melatonin in high doses decreases the NO production via regulations of PP2A and eNOS activities, inducing detachment of endothelial cells, a possible initial step for thrombosis.

Expression of Metallothionein mRNA in Cadmium Treated A549 Cell Line Derived from Human Lung Epithelial Cell (인간 폐포세포 유래 A549세포주에서의 Cadmium 처리에 의한 메탈로치오닌 유전자 발현)

  • 박광식;구자민
    • Environmental Analysis Health and Toxicology
    • /
    • v.18 no.1
    • /
    • pp.15-19
    • /
    • 2003
  • Metallothionein gene expression activity of cadmium was investigated in a human lung epithelial cell line. Cells, grown to near confluence, were exposed to 0∼10 ${\mu}$M Cd metal for 6 hours. Cadmium did not cause morphological alteration in lung epithelial cells that are characteristic of cell damages such as cell shrinkage, detachment of the cell from its neighbors, cytoplasmic and chromatic condensation. However, metallothionein genes of MT-1 and MT-2 were rapidly induced in the treated cell measured by RT-PCR. Regarding the induction pattern of motallothionein mRNA, MT-1 mRNA was induced in a dependent manner. MT-2 mRNA induction, which was measured using oligo primers based on cDNA of human reticulocytes, seemed to be slightly increased in low doses but decreased at high concentration used in the experiment.

Quantitative Image Analysis of Fluorescence Image Stacks: Application to Cytoskeletal Proteins Organization in Tissue Engineering Constructs

  • Park, Doyoung
    • Journal of Advanced Information Technology and Convergence
    • /
    • v.9 no.1
    • /
    • pp.103-113
    • /
    • 2019
  • Motivation: Polymerized actin-based cytoskeletal structures are crucial in shape, dynamics, and resilience of a cell. For example, dynamical actin-containing ruffles are located at leading edges of cells and have a significant impact on cell motility. Other filamentous actin (F-actin) bundles, called stress fibers, are essential in cell attachment and detachment. For this reason, their mechanistic understanding provides crucial information to solve practical problems related to cell interactions with materials in tissue engineering. Detecting and counting actin-based structures in a cellular ensemble is a fundamental first step. In this research, we suggest a new method to characterize F-actin wrapping fibers from confocal fluorescence image stacks. As fluorescently labeled F-actin often envelope the fibers, we first propose to segment these fibers by diminishing an energy based on maximum flow and minimum cut algorithm. The actual actin is detected through the use of bilateral filtering followed by a thresholding step. Later, concave actin bundles are detected through a graph-based procedure that actually determines if the considered actin filament is enclosing the fiber.