• Title/Summary/Keyword: Cell division cycle 20

Search Result 39, Processing Time 0.021 seconds

CELL MORPHOLOGY CHANGE BY THE ULTRAVIOLET RAY IRRADIATION

  • Park, Myoung-Joo;Matuo, Yoichirou;Akiyama, Yoko;Izumi, Yoshinobu;Nishijima, Shigehiro
    • Journal of Radiation Protection and Research
    • /
    • v.34 no.1
    • /
    • pp.15-24
    • /
    • 2009
  • The effect of low doses of ultraviolet (UV) irradiation on morphology changes of cell has been studied based on the observation of the cell length. It was shown that UV-irradiated cell has different behavior in comparison with non-irradiated cell. From the histogram of cell-length distribution, it was confirmed that cell cycle of non irradiated cell was 28 hours, and that cell cycle of irradiated cell with dose of $20\;Jm^{-2}$ was delayed (39 hours), while irradiated cell with $40\;Jm^{-2}$ and $60\;Jm^{-2}$ did not divide and kept growing continuously. It was supposed that in case of $20\;Jm^{-2}$ of irradiation dose, the cell cycle was delayed because the checkpoint worked in order to repair DNA damage induced by generation of pyrimidine dimer, reactive oxygen species and so on. It was also supposed that in case of $40\;Jm^{-2}$ and $60\;Jm^{-2}$ of irradiation dose, overgrowth was induced because the checkpoint was not worked well. The morphology of overgrown cell was similar to that of normally senescent cell. Therefore, it was considered that cell senescence was accelerated by UV irradiation with irradiation doses of $40\;Jm^{-2}$ and $60\;Jm^{-2}$.

Anticancer Effects of Curcuma C20-Dialdehyde against Colon and Cervical Cancer Cell Lines

  • Chaithongyot, Supattra;Asgar, Ali;Senawong, Gulsiri;Yowapuy, Anongnat;Lattmann, Eric;Sattayasai, Nison;Senawong, Thanaset
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.15
    • /
    • pp.6513-6519
    • /
    • 2015
  • Background: Recent attention on chemotherapeutic intervention against cancer has been focused on discovering and developing phytochemicals as anticancer agents with improved efficacy, low drug resistance and toxicity, low cost and limited adverse side effects. In this study, we investigated the effects of Curcuma C20-dialdehyde on growth, apoptosis and cell cycle arrest in colon and cervical cancer cell lines. Materials and Methods: Antiproliferative, apoptosis induction, and cell cycle arrest activities of Curcuma C20-dialdehyde were determined by WST cell proliferation assay, flow cytometric Alexa fluor 488-annexin V/propidium iodide (PI) staining and PI staining, respectively. Results: Curcuma C20 dialdehyde suppressed the proliferation of HCT116, HT29 and HeLa cells, with IC50 values of $65.4{\pm}1.74{\mu}g/ml$, $58.4{\pm}5.20{\mu}g/ml$ and $72.0{\pm}0.03{\mu}g/ml$, respectively, with 72 h exposure. Flow cytometric analysis revealed that percentages of early apoptotic cells increased in a dose-dependent manner upon exposure to Curcuma C20-dialdehyde. Furthermore, exposure to lower concentrations of this compound significantly induced cell cycle arrest at G1 phase for both HCT116 and HT29 cells, while higher concentrations increased sub-G1 populations. However, the concentrations used in this study could not induce cell cycle arrest but rather induced apoptotic cell death in HeLa cells. Conclusions: Our findings suggest that the phytochemical Curcuma C20-dialdehyde may be a potential antineoplastic agent for colon and cervical cancer chemotherapy and/or chemoprevention. Further studies are needed to characterize the drug target or mode of action of the Curcuma C20-dialdehyde as an anticancer agent.

Effects of Cell Cycle Regulators on the Cell Cycle Synchronization of Porcine induced Pluripotent Stem Cells

  • Kwon, Dae-Jin;Hwang, In-Sul;Kwak, Tae-Uk;Yang, Hyeon;Park, Mi-Ryung;Ock, Sun-A;Oh, Keon Bong;Woo, Jae-Seok;Im, Gi-Sun;Hwang, Seongsoo
    • Development and Reproduction
    • /
    • v.21 no.1
    • /
    • pp.47-54
    • /
    • 2017
  • Unlike mouse results, cloning efficiency of nuclear transfer from porcine induced pluripotent stem cells (piPSCs) is very low. The present study was performed to investigate the effect of cell cycle inhibitors on the cell cycle synchronization of piPSCs. piPSCs were generated using combination of six human transcriptional factors under stem cell culture condition. To examine the efficiency of cell cycle synchronization, piPSCs were cultured on a matrigel coated plate with stem cell media and they were treated with staurosporine (STA, 20 nM), daidzein (DAI, $100{\mu}M$), roscovitine (ROSC, $10{\mu}M$), or olomoucine (OLO, $200{\mu}M$) for 12 h. Flow Cytometry (FACs) data showed that piPSCs in control were in G1 ($37.5{\pm}0.2%$), S ($34.0{\pm}0.6%$) and G2/M ($28.5{\pm}0.4%$). The proportion of cells at G1 in DAI group was significantly higher than that in control, while STA, ROSC and OLO treatments could not block the cell cycle of piPSCs. Both of viability and apoptosis were affected by STA and ROSC treatment, but there were no significantly differences between control and DAI groups. Real-Time qPCR and FACs results revealed that DAI treatment did not affect the expression of pluripotent gene, Oct4. In case of OLO, it did not affect both of viability and apoptosis, but Oct4 expression was significantly decreased. Our results suggest that DAI could be used for synchronizing piPSCs at G1 stage and has any deleterious effect on survival and pluripotency sustaining of piPSCs.

Cell Cycle Regulation and Induction of Apoptosis by β-carotene in U937 and HL-60 Leukemia Cells

  • Upadhyaya, K.R.;Radha, K.S.;Madhyastha, H.K.
    • BMB Reports
    • /
    • v.40 no.6
    • /
    • pp.1009-1015
    • /
    • 2007
  • In this communication, we report the efficacy of $\beta$-carotene towards differentiation and apoptosis of leukemia cells. Dose ($20{\mu}M$) and time dependence (12 h) tests of $\beta$-carotene showed a higher magnitude of decrease (significance p < 0.05) in cell numbers and cell viability in HL-60 cells than U937 cells but not normal cell like Peripheral blood mononuclear cell (PBMC). Microscopical observation of $\beta$-carotene treated cells showed a distinct pattern of morphological abnormalities with inclusion of apoptotic bodies in both leukemia cell lines. When cells were treated with $20{\mu}M$ of $\beta$-carotene, total genomic DNA showed a fragmentation pattern and this pattern was clear in HL-60 than U937 cells. Both the cell lines, on treatment with $\beta$-carotene, showed a clear shift in $G_1$ phase of the cell cycle. In addition the study also revealed anti-oxidant properties of $\beta$-carotene since there was reduction in relative fluorescent when treated than the control at lower concentration. Collectively this study shows the dual phenomenon of apoptosis and differentiation of leukemia cells on treatment with $\beta$-carotene.

Molecular Biological Study of The Effects of Gilgyung-Tang(GGT) on Cellular Proliferation and Viability of Normal Human Lung Fibriblast Cell (길경탕(桔梗湯)이 인체(人體) 폐세포(肺細胞)에 미치는 영향(影響)에 관(關)한 분자생물학적(分子生物學的) 연구(硏究))

  • Rhee, Hyung-Koo
    • The Journal of Korean Medicine
    • /
    • v.20 no.2
    • /
    • pp.88-97
    • /
    • 1999
  • To characterize the effects of Gilgyung-Tang(GGT) on cellular proliferation and viability of normal lung fibroblast cells, we examined the cell cycle progression and cell cycle-related gene expression in T3891 using a flow cytometry and a quantitative RT-PCR analysis. 1. The significant surpression effect of cellular proliferations of GGT was observed in proportion to a certain concentration and time. 2. GGT was identified to induce apoptotic death of damaged cells by treatment with a DNA-damage agent and etoposide, while it stimulated the recovery of cellular viability of normal cells. 3 The significant reductions of mRNA expression of PCAN, c-Fos treated by GGT were observed. 4. The significant inductions of mRNA expression of p53, CDKN1. Gadd45 treated by GGT were observed. 5. The apoptosis caused by the reduction of Bcl-2 genes was significant and the Bax genes were increased. but the amount of Fas genes were not changed. These results strongly suggest that GGT triggers arrest of the cell cycle at G1 phase, and thus causes an inhibition of cellular proliferation of human normal lung cells through the transcriptional up-regulation of cell cycle inhibitory genes and down-regulation of induction of cell cycle stimulating genes respectably.

  • PDF

Synthesis and Biological Evaluation of Tetrapeptide Ketones as Reversible 20S Proteasome Inhibitors

  • Latif, Muhammad;Jung, Myoung Eun;Lee, Kwangho;Choi, Gildon
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.12
    • /
    • pp.3571-3575
    • /
    • 2014
  • Proteasome, a multicatalytic protease complex, has been validated as a promising therapeutic target in oncology. Carfilzomib (Kyprolis$^{(R)}$), a tetrapeptide epoxyketone, irreversibly inhibits the chymotrypsin-like (CT-L) activity of the proteasome and has been recently approved for multiple myeloma treatment by FDA. A chemistry effort was initiated to discover the compounds that are reversibly inhibit the proteasome by replacing the epoxyketone moiety of carfilzomib with a variety of ketones as reversible and covalent warheads at the C-terminus. The newly synthesized compounds exhibited significant inhibitory activity against CT-L activity of the human 20S proteasome. When the compounds were tested for cancer cell viability, 14-8 was found to be most potent in inhibiting Molt-4 acute lymphoblastic leukemia cell line with a $GI_{50}$ of $4.4{\mu}M$. Cytotoxic effects of 14-8 were further evaluated by cell cycle analysis and Western blotting, demonstrating activation of apoptotic pathways.

Effects of Non-Cytotoxic Concentration of Anticancer Drugs on Doxorubicin Cytotoxicity in Human Breast Cancer Cell Lines

  • Lee, Yoon-Ik;Lee, Young-Ik
    • BMB Reports
    • /
    • v.29 no.4
    • /
    • pp.314-320
    • /
    • 1996
  • The effects of non-cytotoxic concentrations of tamoxifen, verapamil, and trifluoperazine on doxorubicin cytotoxicity in five human breast cancer cell lines were studied. A non-cytotoxic concentration of tamoxifen resulted in enhanced doxorubicin cytotoxicity in HTB-123, HTB-26, and MCF-7. In these three cell lines, a combination of tamoxifen with verapamil resulted in even more increased doxorubicin cytotoxicity. Addition of verapamil or trifluoperazine alone did not influence the doxorubicin cytotoxicity significantly. Only in HTB-19 did coincubation with verapamil increase the doxorubicin cytotoxicity. In HTB-123, combination of tamoxifen with trifluoperazine increased the doxorubicin cytotoxicity significantly. In the cell lines where co-incubation with tamoxifen increased doxorubicin sensitivity, high estrogen receptor expression was detected. However, HTB-20, where tamoxifen did not enhance doxorubicin action, was also estrogen receptor positive. None of the cell lines had multidrug resistance related drug efflux and drug retention was not increased by the treatment with tamoxifen and verapamil. Cell cycle traverses were not altered by incubation with tamoxifen, verapamil or combinations thereof. These observatlons suggest mechanism of non-cytotoxic concentrations of tamoxifen and verapamil on doxorubicin cytotoxicity may involve one or more other cellular processes besides those of interference of estrogen binding to its receptor, cell cycle perturbation, or drug efflux blocking.

  • PDF

ssc-miR-185 targets cell division cycle 42 and promotes the proliferation of intestinal porcine epithelial cell

  • Wang, Wei;Wang, Pengfei;Xie, Kaihui;Luo, Ruirui;Gao, Xiaoli;Yan, Zunqiang;Huang, Xiaoyu;Yang, Qiaoli;Gun, Shuangbao
    • Animal Bioscience
    • /
    • v.34 no.5
    • /
    • pp.801-810
    • /
    • 2021
  • Objective: microRNAs (miRNAs) can play a role in a variety of physiological and pathological processes, and their role is achieved by regulating the expression of target genes. Our previous high-throughput sequencing found that ssc-miR-185 plays an important regulatory role in piglet diarrhea, but its specific target genes and functions in intestinal porcine epithelial cell (IPEC-J2) are still unclear. We intended to verify the target relationship between porcine miR-185 and cell division cycle 42 (CDC42) gene in IPEC-J2 and to explore the effect of miR-185 on the proliferation of IPEC-J2 cells. Methods: The TargetScan, miRDB, and miRanda software were used to predict the target genes of porcine miR-185, and CDC42 was selected as a candidate target gene. The CDC42-3' UTR-wild type (WT) and CDC42-3'UTR-mutant type (MUT) segments were successfully cloned into pmirGLO luciferase vector, and the luciferase activity was detected after co-transfection with miR-185 mimics and pmirGLO-CDC42-3'UTR. The expression level of CDC42 was analyzed using quantitative polymerase chain reaction and Western blot. The proliferation of IPEC-J2 was detected using cell counting kit-8 (CCK-8), methylthiazolyldiphenyl-tetrazolium bromide (MTT), and 5-ethynyl-2'-deoxyuridine (EdU) assays. Results: Double enzyme digestion and sequencing confirmed that CDC42-3'UTR-WT and CDC42-3'UTR-MUT were successfully cloned into pmirGLO luciferase reporter vector, and the luciferase activity was significantly reduced after co-transfection with miR-185 mimics and CDC42-3'UTR-WT. Further we found that the mRNA and protein expression level of CDC42 were down-regulated after transfection with miR-185 mimics, while the opposite trend was observed after transfection with miR-185 inhibitor (p<0.01). In addition, the CCK-8, MTT, and EdU results demonstrated that miR-185 promotes IPEC-J2 cells proliferation by targeting CDC42. Conclusion: These findings indicate that porcine miR-185 can directly target CDC42 and promote the proliferation of IPEC-J2 cells. However, the detailed regulatory mechanism of miR-185/CDC42 axis in piglets' resistance to diarrhea is yet to be elucidated in further investigation.

Mad2B forms a complex with Cdc20, Cdc27, Rev3 and Rev1 in response to cisplatin-induced DNA damage

  • Ju Hwan Kim;Rajnikant Patel
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.27 no.5
    • /
    • pp.427-436
    • /
    • 2023
  • Mitotic arrest deficient 2 like 2 (Mad2L2, also known as Mad2B), the human homologue of the yeast Rev7 protein, is a regulatory subunit of DNA polymerase ζ that shares high sequence homology with Mad2, the mitotic checkpoint protein. Previously, we demonstrated the involvement of Mad2B in the cisplatin-induced DNA damage response. In this study, we extend our findings to show that Mad2B is recruited to sites of DNA damage in human cancer cells in response to cisplatin treatment. We found that in undamaged cells, Mad2B exists in a complex with Polζ-Rev1 and the APC/C subunit Cdc27. Following cisplatin-induced DNA damage, we observed an increase in the recruitment of Mad2B and Cdc20 (the activators of the APC/C), to the complex. The involvement of Mad2B-Cdc20-APC/C during DNA damage has not been reported before and suggests that the APC/C is activated following cisplatin-induced DNA damage. Using an in vitro ubiquitination assay, our data confirmed Mad2B-dependent activation of APC/C in cisplatin-treated cells. Mad2B may act as an accelerator for APC/C activation during DNA damage response. Our data strongly suggest a role for Mad2B-APC/C-Cdc20 in the ubiquitination of proteins involved in the DNA damage response.

G1 Arrest of the Cell Cycle by Gomisin N, a Dibenzocyclooctadiene Lignan, Isolated from Schizandra chinensis Baill in Human Leukemia U937 Cells (오미자에서 분리된 dibenzocyclooctadiene lignan의 일종인 gomisin N에 의한 인체혈구암세포의 세포주기 G1 arrest 유발)

  • Park, Cheol;Hwang, Hye-Jin;Choi, Byung-Tae;Choi, Tae-Hyun;Kim, Byung-Woo;Choi, Young-Whan;Choi, Yung-Hyun
    • Journal of Life Science
    • /
    • v.20 no.7
    • /
    • pp.977-982
    • /
    • 2010
  • We investigated the anti-cancer effects of two dibenzocyclooctadiene lignans, gomisin A and gomisin N, isolated from Schizandra chinensis Baill, in human promyelocytic U937 cells. Gomisin N, but not gomisin A, inhibited cell growth in a concentration-dependent manner, which was associated with the induction of G1 arrest of the cell cycle. G1 arrest induced by gomisin N was correlated with down-regulation of cyclin E, cyclin-dependent kinase (Cdk) 2 and Cdk4, and a concomitant up-regulation of Cdk inhibitors such as p16 (INK4A) and p21 (WAF1/CIP1). Furthermore, gomisin N inhibited phosphorylation of retinoblastoma protein (pRB) and p130, and expression of transcription factor E2Fs. The results indicated that growth inhibition by gomisin N is related to cell cycle arrest at G1 in U937 cells and these findings suggest that gomisin N may be a useful chemotherapeutic agent.