• Title/Summary/Keyword: Chebyshev polynomial

Search Result 53, Processing Time 0.023 seconds

CONSTRAINED JACOBI POLYNOMIAL AND CONSTRAINED CHEBYSHEV POLYNOMIAL

  • Ahn, Young-Joon
    • Communications of the Korean Mathematical Society
    • /
    • v.23 no.2
    • /
    • pp.279-284
    • /
    • 2008
  • In this paper, we present the constrained Jacobi polynomial which is equal to the constrained Chebyshev polynomial up to constant multiplication. For degree n=4, 5, we find the constrained Jacobi polynomial, and for $n{\geq}6$, we present the normalized constrained Jacobi polynomial which is similar to the constrained Chebyshev polynomial.

Comparison of Matrix Exponential Methods for Fuel Burnup Calculations

  • Oh, Hyung-Suk;Yang, Won-Sik
    • Nuclear Engineering and Technology
    • /
    • v.31 no.2
    • /
    • pp.172-181
    • /
    • 1999
  • Series expansion methods to compute the exponential of a matrix have been compared by applying them to fuel depletion calculations. Specifically, Taylor, Pade, Chebyshev, and rational Chebyshev approximations have been investigated by approximating the exponentials of bum matrices by truncated series of each method with the scaling and squaring algorithm. The accuracy and efficiency of these methods have been tested by performing various numerical tests using one thermal reactor and two fast reactor depletion problems. The results indicate that all the four series methods are accurate enough to be used for fuel depletion calculations although the rational Chebyshev approximation is relatively less accurate. They also show that the rational approximations are more efficient than the polynomial approximations. Considering the computational accuracy and efficiency, the Pade approximation appears to be better than the other methods. Its accuracy is better than the rational Chebyshev approximation, while being comparable to the polynomial approximations. On the other hand, its efficiency is better than the polynomial approximations and is similar to the rational Chebyshev approximation. In particular, for fast reactor depletion calculations, it is faster than the polynomial approximations by a factor of ∼ 1.7.

  • PDF

Local Modification of a Surface and Multiple Knot Insertion by Using the Chebyshev Polynormial (Chebyshev 다항식에 기초한 다수개의 절점 삽입과 곡면의 국부 수정)

  • 최성일;김태규;변문현
    • Korean Journal of Computational Design and Engineering
    • /
    • v.3 no.2
    • /
    • pp.103-112
    • /
    • 1998
  • In this paper insertion of numerous control points to be performed by using the Chebyshev polynomial root at the selection of knot vector. This method introduces a simple method of knot refinement and it is applied in a developed program. The Chebyshev roots exist densely in broth ends of the range and are proposed more effective knot refinement to modify a surface. Therefore, generated control points are relatively uniform in specified knot interval. In the surface generation, a local insertion of numerous control points are easily inserted by using the characteristic of Chebyshev polynomial roots at knot refinement. It is possible to create a complex surface with a single surface. The number of control point can be reduced by using the local insertion of control points in a required shape

  • PDF

EXPONENTIAL DECAY OF $C^1$ LAGRANGE POLYNOMIAL SPLINES WITH RESPECT TO THE LOCAL CHEBYSHEV-GAUSS POINTS

  • Shin, Byeong-Chun;Song, Ho-Wan
    • Communications of the Korean Mathematical Society
    • /
    • v.16 no.1
    • /
    • pp.153-161
    • /
    • 2001
  • In the course of working on the preconditioning $C^1$ polynomial spline collocation method, one has to deal with the exponential decay of $C^1$ Lagrange polynomial splines. In this paper we show the exponential decay of $C^1$ Lagrange polynomial splines using the Chebyshev-Gauss points as the local data points.

  • PDF

FREDHOLM INTEGRAL EQUATION WITH SINGULAR KERNEL

  • M. A. Abdou;S. A. Hassan
    • Journal of applied mathematics & informatics
    • /
    • v.7 no.1
    • /
    • pp.223-236
    • /
    • 2000
  • In this paper, we solve the Fredholm integral equation of the first and second kind when the kernel takes a singular form. Also, some important relations for Chebyshev polynomial of integration are established.

A MODIFIED POLYNOMIAL SEQUENCE OF THE CHEBYSHEV POLYNOMIALS OF THE SECOND KIND

  • Kim, Seon-Hong
    • Communications of the Korean Mathematical Society
    • /
    • v.34 no.2
    • /
    • pp.429-437
    • /
    • 2019
  • Dilcher and Stolarsky [1] recently studied a sequence resembling the Chebyshev polynomials of the first kind. In this paper, we follow their some research directions to the Chebyshev polynomials of the second kind. More specifically, we consider a sequence resembling the Chebyshev polynomials of the second kind in two different ways, and investigate its properties including relations between this sequence and the sequence studied in [1], zero distribution and the irreducibility.

REPRESENTATION OF SOME BINOMIAL COEFFICIENTS BY POLYNOMIALS

  • Kim, Seon-Hong
    • Bulletin of the Korean Mathematical Society
    • /
    • v.44 no.4
    • /
    • pp.677-682
    • /
    • 2007
  • The unique positive zero of $F_m(z):=z^{2m}-z^{m+1}-z^{m-1}-1$ leads to analogues of $2(\array{2n\\k}\)$(k even) by using hypergeometric functions. The minimal polynomials of these analogues are related to Chebyshev polynomials, and the minimal polynomial of an analogue of $2(\array{2n\\k}\)$(k even>2) can be computed by using an analogue of $2(\array{2n\\k}\)$. In this paper we show that the analogue of $2(\array{2n\\2}\)$. In this paper we show that the analygue $2(\array{2n\\2}\)$ is the only real zero of its minimal polynomial, and has a different representation, by using a polynomial of smaller degree than $F_m$(z).

ON ASYMPTOTIC METHOD IN CONTACT PROBLEMS OF FREDHOLM INTEGRAL EQUATION OF THE SECOND KIND

  • Abdou, M.A.
    • Journal of applied mathematics & informatics
    • /
    • v.9 no.1
    • /
    • pp.261-275
    • /
    • 2002
  • Besides asymptotic method, the method of orthogonal polynomials has been used to obtain the solution of the Fredholm integral equation. The principal (singular) part of the kerne1 which corresponds to the selected domain of parameter variation is isolated. The unknown and known functions are expanded in a Chebyshev polynomial and an infinite a1gebraic system is obtained.

FEKETE-SZEGÖ INEQUALITY FOR A SUBCLASS OF NON-BAZILEVIĆ FUNCTIONS INVOLVING CHEBYSHEV POLYNOMIAL

  • Al-khafaji, Saba N.;Bulut, Serap;Juma, Abdul Rahman S.
    • Honam Mathematical Journal
    • /
    • v.43 no.3
    • /
    • pp.503-511
    • /
    • 2021
  • In this present work, we obtain certain coefficients of the subclass 𝓗λ,𝛄(s, b, n) of non-Bazilević functions and estimate the relevant connection to the famous classical Fekete-Szegö inequality of functions belonging to this class.