• Title/Summary/Keyword: Cholinergic modulation

Search Result 13, Processing Time 0.022 seconds

Layer-specific cholinergic modulation of synaptic transmission in layer 2/3 pyramidal neurons of rat visual cortex

  • Cho, Kwang-Hyun;Lee, Seul-Yi;Joo, Kayoung;Rhie, Duck-Joo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.23 no.5
    • /
    • pp.317-328
    • /
    • 2019
  • It is known that top-down associative inputs terminate on distal apical dendrites in layer 1 while bottom-up sensory inputs terminate on perisomatic dendrites of layer 2/3 pyramidal neurons (L2/3 PyNs) in primary sensory cortex. Since studies on synaptic transmission in layer 1 are sparse, we investigated the basic properties and cholinergic modulation of synaptic transmission in layer 1 and compared them to those in perisomatic dendrites of L2/3 PyNs of rat primary visual cortex. Using extracellular stimulations of layer 1 and layer 4, we evoked excitatory postsynaptic current/potential in synapses in distal apical dendrites (L1-EPSC/L1-EPSP) and those in perisomatic dendrites (L4-EPSC/L4-EPSP), respectively. Kinetics of L1-EPSC was slower than that of L4-EPSC. L1-EPSC showed presynaptic depression while L4-EPSC was facilitating. In contrast, inhibitory postsynaptic currents showed similar paired-pulse ratio between layer 1 and layer 4 stimulations with depression only at 100 Hz. Cholinergic stimulation induced presynaptic depression by activating muscarinic receptors in excitatory and inhibitory synapses to similar extents in both inputs. However, nicotinic stimulation enhanced excitatory synaptic transmission by ~20% in L4-EPSC. Rectification index of AMPA receptors and AMPA/NMDA ratio were similar between synapses in distal apical and perisomatic dendrites. These results provide basic properties and cholinergic modulation of synaptic transmission between distal apical and perisomatic dendrites in L2/3 PyNs of the visual cortex, which might be important for controlling information processing balance depending on attentional state.

Prejunctional Modulation of Non-adrenergic Non-cholinergic Relaxation of the Rabbit Proximal Stomach by Potassium Channels (토끼 위 근위부의 비-아드레날린 비-콜린성 이완반응의 포타슘 체널에 의한 접합전 조절작용)

  • Hong, Eun-Ju;Park, Mi-Sun;Park, Sang-Il;Kim, Myung-Woo;Choi, Su-Kyung;Hong, Sung-Cheul
    • YAKHAK HOEJI
    • /
    • v.41 no.4
    • /
    • pp.399-406
    • /
    • 1997
  • The effects of different $K^+$ channel blockers were investigated on the non-adrenergic non-cholinergic (NANC) relaxations in the circular muscle of the rabbit proximal stomach. Non-selective blockers of $K^+$ channels, 4-aminopyridine (4-AP, 3~30${\mu}M$) and tetraethylammonium (TEA, 100~1000${\mu}M$) significantly enhanced the NANC relaxations in a concentration-dependent manner. The enhancement was more prominent for the NANC relaxations induced by the electric field stimulation (EFS) with lower frequencies. Blockers of large conductance $Ca^{2+}$-activated $K^+$ channels, charybdotoxin and iberiotoxin, a blocker of small conduntance $Ca^{2+}$-activated $K^+$ channels, apamin and a blocker of ATP-sensitive $K^+$ channels, glibenclamide had no effect on the NANC relaxations, respectively. Exogeneous administration of nitric oxide (NO, 1~30${\mu}M$) caused concentration-dependent relaxations which showed a similarity to those obtained with EFS. None of the $K^+$ channel blockers had an effect on the concentration-dependent relaxation in response to NO. These results suggest that prejunctional $K^+$ channels regulate the release of NO from the NANC nerve in the rabbit proximal stomach as the inhibition of prejunctional $K^+$ channels increases the NANC relaxation induced by the EFS.

  • PDF

Muscarine $M_2$ Receptor-mediated Presynaptic Inhibition of GABAergic Transmission in Rat Meynert Neurons

  • Jang, Il-Sung;Akaike, Norio
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.6 no.2
    • /
    • pp.63-70
    • /
    • 2002
  • Cholinergic modulation of GABAergic spontaneous miniature inhibitory postsynaptic currents (mIPSCs) by the activation of muscarine receptors was investigated in mechanically dissociated rat nucleus basalis of the Meynert neurons using the conventional whole-cell patch recording configuration. Muscarine $(10{\mu}M)$ reversibly and concentration-dependently decreased mIPSC frequency without affecting the current amplitude distribution. Muscarine action on GABAergic mIPSCs was completely blocked by $1{\mu}M$ methoctramine, a selective $M_2$ receptor antagonist, but not by $1{\mu}M$ pirenzepine, a selective $M_1$ receptor antagonist. NEM $(10{\mu}M),$ a G-protein uncoupler, attenuated the inhibitory action of muscarine on GABAergic mIPSC frequency. Muscarine still could decrease GABAergic mIPSC frequency even in the $Ca^{2+}-free$ external solution. However, the inhibitory action of muscarine on GABAergic mIPSCs was completely occluded in the presence of forskolin. The results suggest that muscarine acts presynaptically and reduces the probability of spontaneous GABA release, and that such muscarine-induced inhibitory action seems to be mediated by G-protein-coupled $M_2$ receptors, via the reduction of cAMP production. Accordingly, $M_2$ receptor-mediated disinhibition of nBM neurons might play one of important roles in the regulation of cholinergic outputs from nBM neurons as well as the excitability of nBM neurons themselves.

[${\alpha}-Adrenergic$ and Cholinergic Receptor Agonists Modulate Voltage-Gated $Ca^{2+}$ Channels

  • Nah, Seung-Yeol;Kim, Jae-Ha;Kim, Cheon-Ho
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.1 no.5
    • /
    • pp.485-493
    • /
    • 1997
  • We investigated the effect of ${\alpha}-adrenergic$ and cholinergic receptor agonists on $Ca^{2+}$ current in adult rat trigeminal ganglion neurons using whole-cell patch clamp methods. The application of acetylcholine, carbachol, and oxotremorine ($50\;{\mu}M\;each$) produced a rapid and reversible reduction of the $Ca^{2+}$ current by $17{\pm}6%,\;19{\pm}3%,\;and\;18{\pm}4%$, respectively. Atropine, a muscarinic antagonist, blocked carbachol- induced $Ca^{2+}$ current inhibition to $3{\pm}1%$. Norepinephrine ($50\;{\mu}M$) reduced $Ca^{2+}$ current by $18{\pm}2%$, while clonidine ($50\;{\mu}M$), an ${\alpha}2-adrenergic$ receptor agonist, inhibited $Ca^{2+}$ current by only $4{\pm}1%$. Yohimbine, an ${\alpha}2-adrenergic$ receptor antagonist, did not block the inhibitory effect of norepinephrine on $Ca^{2+}$ current, whereas prazosin, an ${\alpha}1-adrenergic$ receptor antagonist, attenuated the inhibitory effect of norepinephrine on $Ca^{2+}$ current to $6{\pm}1%$. This pharmacology contrasts with ${\alpha}2-adrenergic$ receptor modulation of $Ca^{2+}$ channels in rat sympathetic neurons, which is sensitive to clonidine and blocked by yohimbine. Our data suggest that the modulation of voltage dependent $Ca^{2+}$ channel by norepinephrine is mediated via an α1-adrenergic receptor. Pretreatment with pertussis toxin (250 ng/ml) for 16 h greatly reduced norepinephrine- and carbachol-induced $Ca^{2+}$ current inhibition from $17{\pm}3%\;and\;18{\pm}3%\;to\;2{\pm}1%\;and\;2{\pm}1%$, respectively. These results demonstrate that norepinephrine, through an ${\alpha}1-adrenergic$ receptor, and carbachol, through a muscarinic receptor, inhibit $Ca^{2+}$ currents in adult rat trigeminal ganglion neurons via pertussis toxin sensitive GTP-binding proteins.

  • PDF

Neurophysiology of Laryngopharyngeal Reflux and Brainstem Reflex (인후두역류증후군과 뇌간반사에 관한 신경생리)

  • Han, Baek Hwa;Hong, Ki Hwan
    • Journal of the Korean Society of Laryngology, Phoniatrics and Logopedics
    • /
    • v.27 no.2
    • /
    • pp.73-77
    • /
    • 2016
  • Laryngopharyngeal reflux disease (LPRD) is different with gastroesophageal reflux disease (GERD). The lower esophageal sphincter (LES) possesses an intrinsic nervous plexus that allows the LES to have a considerable degree of independent neural control. Sympathetic control of the LES and stomach stems from cholinergic preganglionic neurons in the intermediolateral column of the thoracic spinal cord (T6 through T9 divisions), which impinge on postganglionic neurons in the celiac ganglion, of which the catecholaminergic neurons provide the LES and stomach with most of its sympathetic supply. Sympathetic regulation of motility primarily involves inhibitory presynaptic modulation of vagal cholinergic input to postganglionic neurons in the enteric plexus. The magnitude of sympathetic inhibition of motility is directly proportional to the level of background vagal efferent input. Recognizing that the LES is under the dual control of the sympathetic and parasympathetic nervous systems, we refer the reader to other comprehensive reviews on the role of the sympathetic and parasympatetic control of LES and gastric function. The present review focuses on the functionally dominant parasympathetic control of the LES and stomach via the dorsal motor nucleus of the vagus.

  • PDF

Correlation Between Sensory Modulation and Arousal : A Literature Review (감각조절과 각성의 관련성에 대한 문헌고찰)

  • Hong, Eunkyoung
    • The Journal of Korean Academy of Sensory Integration
    • /
    • v.13 no.2
    • /
    • pp.75-84
    • /
    • 2015
  • Objective : The aim of this study was to provide mechanism information of a link between arousal and sensory modulation to increase understanding of neurophysiological study. Subject : Optimal arousal state of a child is an important issue in sensory integration therapy. Limbic system and reticular formation are related to sensory modulation by sensory input. Sensory inputs processes from reticular formation to cortex via ascending reticular activation system for moderate arousal. A lot of neurotransmitters such as cholinergic neurons and monoamin neurons help this processes. Mechanism of arousal was measured by functions of central nervous system (CNS) and autonomic nervous system (ANS) using objective tools such as an electroencephalogram (EEG) and electrodermal responses. Functions of CNS and ANS showed differences between normal children and children with disabilities. Optimal sensory input using sensory integration therapy for children with disabilities helps to act reticular formation, limbic system, and cortex and to maintain appropriate arousal. Conclusion : Such quantitative studies by using neurophysiological methods provide evidence for sensory integration therapy.

Characteristics of Diprophylline-Induced Bidirectional Modulation on Rat Jejunal Contractility

  • Liu, Fang-Fei;Chen, Da-Peng;Xiong, Yong-Jian;Lv, Bo-Chao;Lin, Yuan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.18 no.1
    • /
    • pp.47-53
    • /
    • 2014
  • In this study, we propose that diprophylline exerts bidirectional modulation (BM) on the isolated rat jejunal segment depending on its contractile state. The results supported the hypothesis. Diprophylline ($20{\mu}M$) exerted stimulatory effects on the contractility of jejunal segment in six low contractile states while inhibitory effects in six high contractile states, showing the characteristics of BM. Diprophylline-induced stimulatory effect was significantly blocked by atropine, indicating the correlation with cholinergic activation. Diprophylline-induced inhibitory effect was partially blocked by phentolamine, propranolol, and L-N-Nitro-Arginine respectively, indicating their correlation with sympathetic activation and nitric oxide-mediated relaxing mechanisms. Diprophylline-induced BM was abolished by tetrodotoxin or in a $Ca^{2+}$ free condition or pretreated with tyrosine kinase inhibitor imatinib, suggesting that diprophylline-induced BM is $Ca^{2+}$ dependent, and that it requires the presence of enteric nervous system as well as pacemaker activity of interstitial cells of Cajal. Diprophylline significantly increased the reduced MLCK expression and myosin extent in constipation-prominent rats and significantly decreased the increased MLCK expression and myosin extent in diarrhea-prominent rats, suggesting that the change of MLCK expression may also be involved in diprophylline-induced BM on rat jejunal contractility. In summary, diprophylline-exerted BM depends on the contractile states of the jejunal segments, requires the presence of $Ca^{2+}$, enteric nervous system, pacemaker activity of interstitial cells of Cajal, and MLCK-correlated myosin phosphorylation. The results suggest the potential implication of diprophylline in relieving alternative hypo/hyper intestinal motility.

Biflorin Ameliorates Memory Impairments Induced by Cholinergic Blockade in Mice

  • Jeon, Se Jin;Kim, Boseong;Ryu, Byeol;Kim, Eunji;Lee, Sunhee;Jang, Dae Sik;Ryu, Jong Hoon
    • Biomolecules & Therapeutics
    • /
    • v.25 no.3
    • /
    • pp.249-258
    • /
    • 2017
  • To examine the effect of biflorin, a component of Syzygium aromaticum, on memory deficit, we introduced a scopolamine-induced cognitive deficit mouse model. A single administration of biflorin increased latency time in the passive avoidance task, ameliorated alternation behavior in the Y-maze, and increased exploration time in the Morris water maze task, indicating the improvement of cognitive behaviors against cholinergic dysfunction. The biflorin-induced reverse of latency in the scopolamine-treated group was attenuated by MK-801, an NMDA receptor antagonist. Biflorin also enhanced cognitive function in a naïve mouse model. To understand the mechanism of biflorin for memory amelioration, we performed Western blot. Biflorin increased the activation of protein kinase C-${\zeta}$ and its downstream signaling molecules in the hippocampus. These results suggest that biflorin ameliorates drug-induced memory impairment by modulation of protein kinase C-${\zeta}$ signaling in mice, implying that biflorin could function as a possible therapeutic agent for the treatment of cognitive problems.

Neural Mechanism in Bronchial Asthma (기관지천식에서의 신경적 기전)

  • Choi, Byoung-Whui
    • Tuberculosis and Respiratory Diseases
    • /
    • v.41 no.2
    • /
    • pp.73-86
    • /
    • 1994
  • In addition to classic cholinergic and adrenergic pathways, the existence of a third division of autonomic control in the human airways has been proved. It is called a nonadrenergic noncholinergic(NANC) nervous system, and difficult to study in the absence of specific blockers. Neuropeptides are certainly suggested to be transmitters of this NANC nervous system. It is very frustrating to understand the pathophysiologic role of these peptides in the absence of any specific antagonists. However, further studies of neuropeptides might eventually lead to novel forms of treatment for bronchial asthma. Another study of the interaction between different components of the autonomic nervous system, either in ganglionic neurotransmission or by presynaptic modulation of neurotransmitters at the end-organ will elute neural control in airway disease, particularly in asthma. Studies of how autonomic control may be disordered in airway disease should lead to improvements in clinical management. Epithelial damage due to airway inflammation in asthma may induce bronchial hyperresponsiveness. Axon reflex mechanism is one of possible mechanisms in bronchial hyperresponsiveness. Epithelial damage may expose sensory nerve terminals and C-fiber nrve endings are stimulated by inflammatory mediators. Bi-directional communication between the nerves and mast cells may have important roles in allergic process. The psychological factors and conditioning of allergic reactions is suggested that mast cell activation might be partly regulated by the central nervous system via the peripheral nerves. Studies in animal models, in huamn airways in vitro and in patients with airway disease will uncover the interaction between allergic disease processes and psychologic factors or neural mechainsms.

  • PDF

Neural Substrates and Functional Hypothesis of Acupuncture Mechanisms - Neural substrates and humoral-, neural-, and immune-responses related to acupuncture stimulation- (침의 치료기전에 대한 신경기반 및 신경기능 가설 -침자극과 관계된 신경기반 및 체액성 반응, 신경적 반응, 면역반응-)

  • Cho, Z.H;Hwang, S.C;Wong, E.K.;Son, Y.D;Kang, C.K;Park, T.S;Bai, S.J;Sung, K.K
    • Journal of Acupuncture Research
    • /
    • v.20 no.5
    • /
    • pp.172-186
    • /
    • 2003
  • Acupuncture therapy has demonstrated efficacy in several clinical areas, and of these areas the understanding of pain has progressed immensely in the last two decades. The underlying mechanisms of acupuncture in general and the analgesic effect in particular are still not clearly delineated. The leading hypothesis include the effects of local stimulation, neuronal gating, release of endogenous opiates, and the placebo effect. Accumulating evidence suggests that the central nervous system(CNS) is essential for the processing of these effects, via its modulation of the autonomic nervous system, neuro-immune system, and hormonal regulation. These processes tap into basic survival mechanisms. As such, understanding the effects of acupuncture within a neuroscience-based framework becomes vital. We propose a model which incorporates the stress-induced hypothalamus-pituitary-adrenal axis(HPA-axis) model of Akil et al., the cholinergic anti-inflamatory observations of Tracey et al., and Petrovic et al.

  • PDF